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ABSTRACT

In this paper, we present a robust line segment detection algorithm
to efficiently detect the line segments from an input image. Firstly
a parameter-free Canny operator, named as CannyPF, is proposed
to robustly extract the edge map from an input image by adaptively
setting the low and high thresholds for the traditional Canny oper-
ator. Secondly, both efficient edge linking and splitting techniques
are proposed to collect collinear point clusters directly from the edge
map, which are used to fit the initial line segments based on the least-
square fitting method. Thirdly, longer and more complete line seg-
ments are produced via efficient extending and merging. Finally, all
the detected line segments are validated due to the Helmholtz prin-
ciple [1, 2] in which both the gradient orientation and magnitude
information are considered. Experimental results on a set of repre-
sentative images illustrate that our proposed line segment detector,
named as CannyLines, can extract more meaningful line segments
than two popularly used line segment detectors, LSD [3] and ED-
Lines [4], especially on the man-made scenes.

Index Terms— Line Segment Detector, Edge Map, Parameter-
Free Canny, Line Segment Validation

1. INTRODUCTION

Line segment detection is an important and classical problem in im-
age processing and computer vision. The line segments represent
important geometric information of an image, especially when the
scene of the image is comprised of many man-made objects. Be-
sides, line segments can be used as low-level features to assist to
solve problems such as stereo matching [5, 6], indoor scene layout
recovering [7], simultaneous localization and mapping (SLAM) [8],
road extraction [9], crack detection in materials, image compression,
and so on.

In general, the line segment detection methods can be divid-
ed into two categories: gradient-orientation-based and gradient-
magnitude-based. The idea of detecting line segments based on the
gradient orientations was firstly proposed by Burns et al. [10] whose
approach only depends on the gradient orientations. In contrast to
classic line segment detectors based on the edge map, their proposed
approach defines a line segment as a straight image region whose
points share roughly the same image gradient orientation. A recent-
ly proposed line segment detector LSD [3] produces accurate line
segments and controls the number of false detections in a low level
by efficiently combing gradient orientations and the line validation
according to the Helmholtz principle. The LSD states clearly what’s
an line segment, how to detect it and how to verify it, but the gradi-
ent magnitude threshold ρ is a safe threshold which eliminates some
useful line information as well. Decreasing the value of ρ leads
to detecting more but coarser line segments, which is an intrinsic
problem of LSD because the gradient orientation is unstable when
the gradient magnitude is small.

The gradient-magnitude-based methods first apply an edge de-
tector to extract the edge map from the input image and then detect
line segments based on the extracted edge map. Hough transfor-
m (HT) [11] is a traditional line detector based on an edge map,
which extracts all lines containing a number of edge points exceed-
ing a threshold. A lot of variants of the Hough transform have been
proposed, e.g., the elliptical Gaussian kernel-based Hough transfor-
m [12], but they usually extract infinitely long lines instead of line
segments and easily cause many false detections in richly-textured
regions with strong edges. In order to overcome these shortcomings,
Akinlar and Topal [4] proposed a robust and efficient line segmen-
t detector, named as EDLines, to extract line segments from edge
segments, which consists of three main steps: 1) extracting the edge
segments by the Edge Drawing (ED) [13] algorithm; 2) extracting
line segments from the edge segments based on the least-square line
fitting method; 3) eliminating false line segments according to the
Helmholtz principle. The key problem of the edge segment based
methods lies on that the line segment detection result suffers from
the deficiency of the edge segment detection algorithm to a great
extent. Even through EDPF [14] which is a parameter-free edge seg-
ment detector with a false detection control can get more reliable
edge segments, a noisy point with strong gradient or a crossing of
line segments can still deviate the edge segment’s direction easily,
thus a single linear edge segment can be detected as several short
and curving segments. As a result, a longer line segment can be bro-
ken into several short ones, also the weak gradient parts of a line
segment may be lost.

Actually, line segments should be detected directly from the im-
age (e.g., LSD) or an edge map that contains all the structural infor-
mation of the image, instead of the edge segments which has already
lost some information in the edge segment detection. Following this
thought, we propose a robust line segment detector, named as Canny-
Lines, which extracts line segments based on an edge map obtained
by applying a parameter-free Canny operator with the following con-
tributions: 1) a parameter-free Canny operator, named as CannyPF,
which adaptively chooses the low and high thresholds of the Can-
ny operator for the input image by applying the Helmholtz Principle
on the edge detection; 2) a line segment detector, which extracts the
line segments directly based on edge map instead of edge segments;
3) a more reasonable validation step, which uses both the gradient
orientation and magnitude information to verify each line segment.

2. ALGORITHM

In this section, we first give an overview of the proposed Canny-
Lines algorithm, and then describe each step of the algorithm in de-
tail. Given a grayscale image, the proposed CannyLines algorithm
detects line segments via the following four steps: (1) Edge map ex-
traction. A parameter-free Canny edge detector, named as CannyPF,
is proposed to extract the edge map from an input image, which can



self-adaptively adjust the low and high thresholds of the Canny oper-
ator based on the gradient magnitude of the input image, and which
can ensure the completeness of the image’s structure information.
(2) Edge linking and splitting. Starting from the edge pixel with the
greatest gradient magnitude, the linking process collects pixels on
the edge map with a direction control. Therefore, an efficient split-
ting process is conducted to get short initial line segments. (3) Line
segments extending and merging. The line segments are extended in
both directions to collect more edge pixels and merged with other
collinear line segments around. (4) Line validation. A novel line
validation method based on the Helmholtz principle combining both
gradient orientation and magnitude information is proposed to verify
each line segment.

2.1. Parameter-Free Canny Operator
The standard Canny edge detector [15] consists of four steps [16]:
(1) A Gaussian blur is applied to reduce image noise. (2) A gradi-
ent operator is applied to compute the magnitude and orientation of
gradients. (3) Non-maximum suppression determines whether the
pixel is a better candidate as an edge than its neighbors. (4) Hys-
teresis thresholding finds where edges begin and end. The Canny
operator uses two thresholds instead of a single threshold, which
makes it more flexible. However, the high threshold with a too high
value can miss important information, on the other hand, the low
threshold with a too low value will falsely identify irrelevant infor-
mation (such as noise) as important. In fact, the two thresholds of
Canny should not be set as a constant value for all the images, they
should be adaptively adjusted according to the input image. Dif-
fering from the traditional Canny threshold selection method OT-
SU [17, 16] and the curve segments based edge detector [18], our
proposed parameter-free Canny operator focuses on the complete-
ness of the image’s structural information after applying the Canny
operator according to the Helmholtz principle.

2.1.1. Helmholtz Principle on Edge Detection

According to the computational Gestalt theory and the Helmholtz
principle [1, 2], an observed geometric structure is perceptually
“meaningful” if its number of occurrences would be very small in
a random situation. In the work of Desolneux, Moisan and Morel
(DMM) [19], the Helmholtz principle is used to define and compute
edges and boundaries (closed edges) in an image by a parameter-free
method. In our method, it is used to define the “minimal meaningful
gradient magnitude” and the “maximal meaningless gradient mag-
nitude”, which are set as the low and high thresholds of the Canny
operator.

Let I be a discrete image of N ×N pixels, g(x) be the gradient
magnitude at the pixel x computed via finite differences, l be a level
line of the image I with a length l counted in independent points.
Then we consider the event: g(xi) ≥ u for each pixel xi ∈ l, i.e.
each pixel of l has a gradient magnitude larger than u. Since the l
points are independent, the probability H(u)l of this event is:

H(u)l =
∏

xi∈l
P (g(xi) ≥ u), (1)

where H(u) is the probability for a point on any level line to have a
contrast larger than u, which is defined as:

H(u) =
1

M
#{x ∈ I|g(x) ≥ u}, (2)

where M is the number of pixels of the image, whose gradient mag-
nitudes are not equal to zero, i.e., M = #{x ∈ I|g(x) ̸= 0}. For
each edge segment Sk with the length lk, the number of connected

pieces of Sk is lk × (lk − 1)/2, so the total number of connected
pieces of all edge segments is computed as:

Np =
∑

k
lk × (lk − 1)/2. (3)

Considering a connected edge segment S with the length l, and with
a minimum gradient magnitude u for the points in S, then the Num-
ber of False Alarms (NFA) of this event (edge segment) is defined as
NFA(S) = Np×H(u)l. Actually, NFA defines the number of false
events (segment detections) under a reasonable noise model, which
means the expectation of the number of segments like S output by
the algorithm when run on a white-noise image. NFA(S) ≤ 1
represents the edge segment S is meaningful, otherwise, it is mean-
ingless if NFA(S) > 1.

An intrinsic problem of the Helmholtz principle is that the mean-
ingfulness of an “event” is considered in probability instead of in
vision, which means that “if a significant part of a natural image
happens to be very flat, as a consequence, all level lines long enough
(with length larger than, say, 30 pixels) will be meaningful” [19]
even their gradients is too low to be noticed in vision.

2.1.2. CannyPF

Following the thought of using the Helmholtz principle on edge de-
tection, we introduce two new definitions according to the Helmholtz
principle:

Definition 1 - Minimal Meaningful Gradient Magnitude. A gra-
dient magnitude is defined as the minimal meaningful gradient mag-
nitude gmin if NFA(Sk) ≤ 1 for any edge segment Sk with a min-
imal gradient magnitude equal or greater than gmin.

Definition 2 - Maximal Meaningless Gradient Magnitude. A
gradient magnitude is defined as the maximal meaningless gradient
magnitude gmax if NFA(Sk) ≥ 1 for any edge segment Sk with a
minimal gradient magnitude equal or less than gmax.

The minimal length lmin of all meaningful edge segments is de-
termined by applying the Helmholtz principle on the gradient orien-
tation, which is a constant value for an image calculated as:

lmin = −4 log(N)/ log(p), (4)

where N is the bigger one of the width and height of the image,
which is regarded as the maximal meaningful length lmax, and p
is a constant value for all the images which is set to 1/8 according
to LSD [3]. Given any edge segment with the length in the range
of [lmin, lmax], Definition 1 makes sure that it is meaningful if its
minimum gradient magnitude is greater than gmin and Definition 2
ensures that it is meaningless if its minimum gradient magnitude is
smaller than gmax. As we have discussed above, gmax is calculated
in probability, the value of which varies from ten to hundreds. To
balance the effects of probability and vision, we introduce a vision-
meaningful parameter λv which denotes the lower limit of a gradi-
ent magnitude that is sufficient enough to be noticed in vision. Thus
gmax is revised as gmax =

√
λv/gmax × gmax. Algorithm 1 de-

scribes the procedure in details of our proposed parameter-free Can-
ny operator in which the low and high thresholds for the traditional
Canny operator CannyPF is adaptively computed based on the input
image.

2.2. Edge Linking and Splitting
Based on the edge map obtained by the CannyPF operator, we apply
the linking and splitting procedures used in the kernel-based Hough
Transform (KHF) voting scheme [12], which is a simple but efficien-
t way to obtain a large amount of edge segments containing nearly
collinear edge points in the following three steps: (1) Sorting: all



Algorithm 1 Parameter-Free Canny Edge Detection
Input: The input image I
Output: The edge map E

1: Appy a Gaussian blur on I to reduce the noise.
2: Calculate gradient magnitudes via the Sobel operator.
3: Build the histogramH of gradient magnitudes of all pixels with

the bin step size of 1.
4: Calculate the probability distribution P (i) of the i-th bin of H,

i = 1, 2, · · · , Nh where Nh denotes the bin size ofH.
5: Compute Np =

∑Nh
i=1 (H(i)× (H(i)− 1)/2) whereH(i) de-

notes the frequency of the i-th bin of H and the minimal mean-
ingful length lmin with Eq. (4).

6: Compute H(gmin)=(1/Np)
1

lmin and H(gmax)=(1/Np)
1

lmax

based on the assumption NFA(S)=Np×H(u)l=1.
7: p = 0
8: for i = Nh : −1 : 1 do
9: p = p+ P (i)

10: if p ≥ H(gmin) then
11: gmin = i
12: end if
13: if p ≥ H(gmax) then
14: gmax = i
15: end if
16: end for
17: Revise gmax =

√
λv/gmax × gmax

18: E← CANNY(..., gmax, gmin, ...)

the edge points are quickly sorted according to their gradient mag-
nitudes. (2) Linking: starting from the edge point with the greatest
gradient magnitude, the linking process searches the eight-connected
neighbor edge points on the edge map with an orientation control
scheme, which makes sure only the neighbor edge point with a gra-
dient orientation enough close to one of the current edge point would
be accepted. According to LSD, the gradient orientation difference
tolerance is set to π/8 for all the images. After the linking process of
an edge segment is terminated, the same linking process is applied
on the remaining edge points. All the edge segments are collected
in such an iterative scheme. (3) Splitting: Any edge segment with a
length larger than some small threshold θs will be splitted into two
edge segments at the point with a maximal deviation larger than one
pixel to the line formed by the two endpoints of the edge segment.
In this way, the edge segments will possibly be iteratively splitted.

2.3. Line Segment Extending and Merging
After edge linking and splitting, we get a cluster of edge segments
whose points are nearly collinear, which are fed to a least square
fitting function to get a large amount of initial line segments. There-
fore, the proposed extending and merging strategies are applied to
get longer and more complete line segments. Given a line segment
Li, we extend it from one of its endpoints along the line direction.
First we project this endpoint onto the fitted line li to get the pro-
jected point pr in the real domain, which is rounded to the near-
est integer point p. Second we collect at most three nearest points
{qk}Kk=1 (K ≤ 3) in the eight neighborhood of p orthometric to
the line extending direction, whose distances {d(qk, li)} to li are
not larger than 1 pixel, i.e., d(qk, li) ≤ 1, k = 1, · · · ,K. Third
we sort {qk}Kk=1 according to their distances to li in the increasing
order and sequentially check whether there exists any edge point in
the locations of these points. If some edge point is found, we ac-
cept it as an extending hypothesis, otherwise, we regard this case as

a gap. During the extending process, if some edge point of another
line segment Lj with the fitted line lj is met and the direction differ-
ence between li and lj is less than a pre-defined threshold θm, these
two line segments will be merged into a single line segment if the
fitting mean squared error based on the least square fitting method
is not large than 1 pixel. In this way, we continue to extend the line
segment Li until there are two gaps in 5 continuous extending op-
erations. The extended line segment Li will be refitted when the
number of extending hypothesis is larger than the minimal meaning-
ful length lmin. While one extending direction is terminated, we start
another extending direction in the same way.

2.4. Line Validation
Since Desolneux et al. [19] came up with a general framework to
deal with parameter thresholds in image analysis, the line validation
has become a standard configuration of the line segment detectors
including LSD and EDLines. Let L be a segment of a length n with
at least k points having their directions aligned with the line direction
in an image of size N ×N , then the Number of False Alarms (NFA)
of L is defined as:

NFA(n, k) = N4 ×
n∑

i=k

(
n

i

)
pi(1− p)n−i, (5)

where p is the probability that a point is aligned with a line segment
which is set to 1/8 for constant according to LSD.

The validation process discussed above uses only the orienta-
tion information of the edge points because the gradient orientation
is “the simplest local contrast invariant information” [2]. The short-
coming of using the gradient orientation only is that when the gra-
dient magnitude is small, the gradient orientation is unstable. LSD
solves this problem by using a gradient threshold to filter out noisy
backgrounds. Under this condition, the LSD using only the gra-
dient orientation information “fails especially in images where the
background contains some white noise” [4]. However, it is obvi-
ous that a line segment with high gradient magnitudes is a stronger
feature than that with low gradient magnitudes when they share the
same length and the same number of aligned points. Inspired by the
Helmholtz principle on edge detection, we come up with a new defi-
nition of Number of False Alarms which combines both NFA(n, k)
and NFA(S) because a line segment is obtained from an edge seg-
ment, which is defined as:

NFA(L) = NFA(n, k)×NFA(S)

= N4 ×
n∑

i=k

(
n

i

)
pi(1− p)n−i ×Np ×H(u)n,

(6)

where u denotes the minimum gradient magnitude of the points in S
and Np is the total number of connected pieces of all edge segments
as in Eq. (3). The definition of NFA(L) states that the line segment
with more aligned points and higher gradient magnitudes is more
likely to be a Gestalt.

3. EXPERIMENTAL RESULTS

3.1. Parameters
The proposed line segment detector CannyLines is parameter-free
because all the parameters related to the input image are determined
by the image itself, while other parameters can be set the same for
all the images, which are discussed as follows:

(1) λv for edge detection, which denotes the lower limit of a
gradient magnitude that is sufficient enough to be noticed in vision.



Fig. 1. Comparison of CannyLines with (Left) and without (Right)
the use of the parameter λv in CannyPF.

Actually, it is difficult to give an accurate value of λv directly, so we
tested different values of λv on a large amount of images captured
from different scenes, and found that λv = 70 is a good balance of
completeness and cleanliness. Without the use of λv , the line seg-
ments detection result represents the image directly in probability,
which may lead to false positives (see the up-right picture in Fig. 1)
in the high contrast image and false negatives (see the down-right
figure in Fig. 1) in the low contrast image.

(2) θs for edge segment splitting, which represents the minimal
length of an edge segment to be considered for splitting and equals
twice of the possibly shortest edge segment. For an image with a
certain size, the minimal meaningful length lmin is decided in prob-
ability, so we set θs = lmin/2 which means that the length of the
shortest edge segment splitting is lmin/4. For most images the value
of lmin approximately equals 12, thus the length of the shortest edge
segment is 3.

(3) θm for line segment merging, which is the maximal direction
deviation tolerance of two close-direction line segments to be con-
sidered for merging. We simply set θm = 2 × tan(2/lmin), which
can be explained based on the fact that the two close-direction line
segments with the length lmin and with 1-pixel deviation of all their
endpoints will be considered for merging. The θm is used to quickly
exclude the line segments that can’t be merged.

3.2. Evaluation on CannyPF
To a great extent, an edge-based line segment detector benefits from
the good edge detection map extracted from the input image. To
quantitatively evaluate the effectiveness of the proposed parameter-
free Canny edge detector CannyPF , we tested it on the YorkUr-
banDB database [20], which contains a series of images of man-
made buildings and the corresponding ground-truth line segments of
each image. Ten indoor images and ten outdoor images were chosen
to evaluate the precisions of CannyPF and the following four edge
detection methods: CannySR [21], CannySRPF [21], ED [13], and
EDPF [14], the codes of which are obtained from the Edge Draw-
ing library [21]. Let E is the binary edge map obtained by applying
an edge detector on the input image I. Based on the assumption
that one pixel of a ground-truth line segment of I can be identified
when there exists edge point(s) of E in its eight neighborhood, the
precision p of an edge detector on an input image I was defined as
p =

∑
k N(Lk)/

∑
k |Lk| where |Lk| denotes the length or size

of the ground-truth line segment Lk in I and N(Lk) denotes the
number of edge points in Lk successfully identified in E. Fig. 2
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Fig. 2. Precision comparison of different edge detectors on 10 indoor
scene images (Left) and 10 outdoor scene ones (Right).

Table 1. Line segments detection results of LSD, EDLines and Can-
nyLines.

LSD EDLines CannyLines
Scenes N L L/N N L L/N N L L/N

In
door

1 864 30614.9 35.4 748 27631.2 36.9 642 26589.3 41.4
2 530 21545.4 40.7 444 19647.3 44.3 397 19965.5 50.3
3 469 16539.6 35.3 407 15869.3 39.0 443 17738.3 40.0
4 215 12302.2 57.2 170 12027.1 70.7 203 14351.4 70.7
5 627 19500.9 31.1 577 18271.4 31.7 485 18063.2 37.2

Out
door

1 823 22023.8 26.8 591 18464.2 31.2 633 21181.7 33.5
2 562 14753.8 26.3 499 15680.7 31.4 484 15590.7 32.2
3 266 8981.9 33.8 257 8928.0 34.7 270 9251.7 34.3
4 471 12900.4 27.4 416 10610.9 25.5 327 11819.3 36.1
5 348 12425.9 35.7 322 11180.7 34.7 313 12228.3 39.1

shows the edge detection results on the indoor and outdoor scene
images, from which we can observe that CannyPF extracted more
ground-truth edge pixels than other edge detectors either in indoor
or in outdoor scene images, over which the average precision of the
proposed CannyPF edge detector is 90.9%, which is obviously high-
er than 86.7% of ED and 85.9% of EDPF.

3.3. Evaluation on CannyLines

To evaluate the performance of the proposed line segment detec-
tor CannyLines, 5 indoor images and 5 outdoor ones were chosen
from the tested images used in Section 3.2. Table 1 shows the s-
tatistical results of LSD, EDLines and CannyLines. As the amount
of detected line segments can not reflect the effectiveness of a line
segment detector very well, we use the average length of line seg-
ments to indicate the ability of different detectors. From Table 1,
we can observe that on most images, the total line length L of the
proposed CannyLines detector is longer than those of EDLines and
close to those of LSD, and the average line length L/N is longer than
those of LSD and EDLines, which means that the proposed Canny-
Lines detector generated more meaningful line segments than LSD
and EDLines generally. The execution programs of CannyPF and
CannyLines, and more experimental results are available at http:
//cvrs.whu.edu.cn/projects/cannyLines/.

4. CONCLUSION

In this paper, we propose a robust line segment detector, named as
CannyLines, which is based on the edge map obtained by applying a
parameter-free Canny operator on the input image. A large amount
of short edge segments containing nearly collinear points are col-
lected via efficient edge linking and splitting operations on the edge
map. The final line segments are obtained via fitting, extending,
merging and validation from edge segments. The proposed Can-
nyLines is parameter-free for all the input images. Experiments on
representative images captured from different kinds of scenes exam-
ined the robustness and validity of our proposed parameter-free edge
detector CannyPF and line segment detector CannyLines.
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