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a b s t r a c t

This paper presents a hierarchical method for matching line segments from two images. Line segments
are matched first in groups and then in individuals. While matched in groups, the line segments lying
adjacently are intersected to form junctions. At the places of the junctions, the structures are constructed
called Line–Junction–Line (LJL), which consists of two adjacent line segments and their intersecting
junction. To reliably deal with the possible scale change between the two images to be matched, we
propose to describe LJLs by a robust descriptor in the multi-scale pyramids of images constructed from
two original images. By evaluating the description vector distances of LJLs from the two images, some
candidate LJL matches are obtained, which are then refined and expanded by an effective match-
propagation strategy. The line segments used to construct LJLs are matched when the LJLs they formed
are matched. For those left unmatched line segments, we match them in individuals by utilizing the local
homographies estimated from their neighboring matched LJLs. Experiments demonstrate the super-
iorities of the proposed method to the state-of-the-art methods for its robustness in more difficult
situations, the larger amounts of correct matches, and the higher accuracy in most cases.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

As a low-level vision task, image matching is fundamental for
many applications which require recovering the 3D scene structure
from 2D images, like robotic navigation, structure from motion, 3D
reconstruction, and scene interpretation. The majority of image
matching methods are feature point based [1–6] which commence
the extraction of feature points from images, followed by the uti-
lization of the photometric information adjacently associated with
the extracted points to match them. Objects in real scenes, however,
can be easily outlined by line segments, especially for man-made
scenes. This indicates that it is better to recover 3D scene structures
based on line segments than that on feature points, at least for
some scenes [7–12]. For example, for poorly textured scenes, where
feature points are hard to be detected and matched, recovering
their 3D structures from line matches seems the only choice
because their structures can be easily outlined by several edge line
segments [13]. Despite these advantages, both the lack of point-to-
point correspondence and the loss of connectivity and complete-
ness of the extracted line segments make line segment matching a
tough task, which also partly explains why line segment matching
has been less investigated.

Line matching methods in existing literatures can generally be
classified into two categories: the methods that match line seg-
ments in individuals and those in groups. Some methods matching
line segments in individuals exploit the photometric information
associated with individual line segments, such as intensity [14,15],
gradient [16–18], and color [19] in the local regions around line
segments. All these methods underlie the assumption that there
are considerable overlaps between corresponding line segments.
This assumption leads to the failure of these methods in situations
where corresponding line segments share insufficient corre-
sponding parts. Besides, in regions with repetitive textures, these
methods tend to produce false matches since the lack of variations
in the photometric information for some line segments. Other
methods matching line segments in individuals leverage point
matches for line matching [20–23]. These methods first find a
large group of point matches using the existing point matching
methods, and then exploit the invariants between coplanar points
and line(s) under certain image transformations to evaluate the
correspondence of the line segments from two images. The line
segments which meet the invariants are regarded to be in corre-
spondence. These methods utilize geometric relationship between
line segments and points, rather than photometric information in
the local regions around line segments, and are thus robust even
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when local shape distortions are severe. However, these methods
share a common disadvantage that they are incapable of proces-
sing images in which the scenes captured are poorly textured since
feature points are hard to be detected and matched in this kind of
scenes, which consequently disables the use of point matches for
line segment matching.

Matching line segments in groups is more complex, but more
constraints are available for disambiguation. Most of these meth-
ods [13,24–26,32] first use some strategies to intersect line seg-
ments to form junction points and then utilize features associated
with the generated junction points for line segment matching.
These methods transfer line matching to point matching, a widely
investigated problem which many effective algorithms target to
solve. But junction points contain more information than feature
points detected by some detectors [27–30]. They are the results of
intersecting pairs of adjacent line segments and the relationship
between junction points and line segments forming them is
additional and important information that can be exploited for
matching them. How to effectively exploit features associated with
junction points to help match them is still an open issue. In [31],
rather than exploiting features of junctions for line segment
matching, the stability of the relative positions of the endpoints of
a group of line segments in a local region under various image
transformations is exploited. This method first divides line seg-
ments into groups and then generates a description of the con-
figuration of the line segments in each group by calculating the
relative positions of these line segments. Since the configuration of
a group of line segments in a local region is fairly stable under
most image transformations, the description of the configurations
of two groups of line segments in correspondence should be
similar. In this way, groups of line segments can be matched. This
method is robust in many challenging situations, but the depen-
dence on the approximately corresponding relationship between
the endpoints of corresponding line segments leads to the ten-
dency of this method to produce false matches when substantial
disparity exists in the locations of the endpoints.

Our proposed line matching method in this paper is a combi-
nation of the two categories methods described above. It matches
line segments both in groups and in individuals under a hier-
archical framework. The framework is composed of three stages
where line segments are matched in groups in the first two stages
while in individuals in the third stage. The three-stage flowchart of
the proposed line matching algorithm is illustrated in Fig. 1. For
two sets of line segments extracted from two images, the first
Fig. 1. The flowchart of the propo
stage commences intersecting neighboring line segments to form
junction points. At the places of the formed junction points, we
form the structures called Line–Junction–Line (LJL), utilizing two
adjacent line segments and their intersecting junction. To greatly
reduce the effect of the scale change between the two images, we
propose to build Gaussian image pyramids for the original images
and adjust the LJLs constructed in the original images to fit each
image in the image pyramids and described them there by the
proposed LJL descriptor. Some initial LJL matches can be found by
evaluating the description vector distances of LJLs from the two
images. These LJL matches are then refined and expanded in the
second stage, where we propagate LJL matches by iteratively
adding new matches while deleting possibly false ones. In the
above two stages, the line segments lying closely with each other
from the two images are matched along with their constructed
and matched LJLs. For those line segments lying far away from
others and are not used to constructed LJLs, we match them in
individuals in the third stage by utilizing the local homographies
estimated from their neighboring matched LJLs.

This work is an extension of our work presented in [32].
Compared with the previous one, this work makes promotions in
the following aspects. First, a more general way is utilized to
generate junctions using adjacent line segments. In [32], sets of
line segments extracted by some line segment detectors in a image
are processed in advance before they are used for matching by a
series of procedures to obtain a new line segment set where some
line segments are extended to be longer and are connected with
others. In this work, the line segments extracted by line detectors
are not required to be refined in advance, and can be used to
generate junctions directly based on the local spatial proximity.
This promotion helps generate more junctions and contributes to
better matching results. Second, a more robust descriptor is pro-
posed to describe the structure (called RPR in [32], while LJL in this
paper) formed by two adjacent line segments and their inter-
secting junction. Third, we propose a more reasonable strategy to
deal with the possible scale change between images. To match line
segments from two images with scale change, in [32], the global
scale change factor between the two original images is estimated
and one of the two images is adjusted to the same scale as the
other one. This strategy is reasonable only when the scale change
between the two images is a global one. When scale changes
between the two images vary with local regions (often introduced
by viewpoint changes), this strategy is unable to reliably work.
This disadvantage is solved in this paper and the proposed strategy
sed line matching algorithm.
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can deal with both global scale changes and locally variant ones.
Fourth, a more sophisticated way to match individual line seg-
ments is proposed. For line segments which cannot be matched in
groups (in RPRs in [32] while in LJLs in this paper), in [32], they are
used to intersect with those matched line segments to construct
new RPRs and matched along with the newly constructed RPR
again. In this paper, they are matched by the local homographies
estimated from their neighboring corresponding LJLs. All the
above promotions together contribute to the better performance
of this work than our previous one.

Experimental results substantiate the advantages of this work
over the previous one and other state-of-the-art line matching
methods for its robustness under more severe image transforma-
tions, its better performance for poorly textured scenes, the larger
amount of correct line matches obtained, and higher accuracy in
the majority of cases.

The remainder of the paper is organized as follows. Section 2
introduces the details of constructing, describing and matching
LJLs. The adopted match propagation strategy is described in
Section 3. The step of matching individual line segments failed to
be matched along with LJLs is described in Section 4. Experimental
results are presented in Section 5 and some discussion about the
algorithm is given in Section 6. The conclusions are finally drawn
in Section 7.
Fig. 2. An illustration of finding line segments possibly coplanar in 3D space. The
rectangle filled in yellow is the affect region of l1. l2, l3 and l4 are the three
neighbors of l1. w is a parameter controlling the size of the affect region of l1. (For
interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)

Fig. 3. Two configurations of a pair of line segments intersecting with each other.

Fig. 4. An illustration of describing a LJL, (OA, O, OB), with the proposed LJL
descriptor.
2. Initial LJL match generation

The endpoints of line segments are unreliable for line segment
matching since there often does not exist accurate point-to-point
correspondence for the endpoints of corresponding line segments.
The intersecting junctions of line segments coplanar in 3D space
are however invariant under projective transformation and are
thus reliable to be exploited for matching line segments. If the two
intersecting junctions of two pairs of line segments are success-
fully matched, it is then easy to determine the corresponding
relationship between the two pairs of line segments forming
them. Therefore, what needs to do first is to find some line seg-
ments coplanar in 3D space to generate junctions.

2.1. LJL construction

It is hardly possible to determine which line segments are
coplanar in 3D space only from a 2D image without the projective
information of the camera. But adjacent line segments possess a
higher probability to be coplanar in 3D space due to the spatial
proximity. So, it is a good choice to intersect neighboring line
segments to obtain reliable junctions. We use a similar method as
that presented in [26] to generate junctions. Refer to Fig. 2, for a
line segment l1, we define its affect region as a rectangle (filled in
yellow in the figure), which centers at the midpoint of l1 and has
the length j l1 j þ2w and the width of 2w, where j l1 j denotes the
length of l1 and w is a user-defined parameter. Any line segment
satisfying the following two conditions is assumed to be coplanar
with l1 in 3D space. First, at least one of its two endpoints drops in
the affect region of l1. Second, its intersection with l1 also drops in
the affect region of l1. Under these two conditions, in Fig. 2, only l2
is accepted to be coplanar with l1 in 3D space. l3 is rejected
because its intersection with l1 is not within the affect region of l1
despite that one of its endpoint drops inside it. l4 is rejected for
neither of its two endpoints drops in the affect region of l1.

The configurations of two line segments assumed to be coplanar
in 3D space exist in the two forms as shown in Fig. 3. In Fig. 3(a), the
intersection lies on one of the two line segments (not on their
extensions). In this case, two LJLs, (OA, O, OC) and (OB, O, OC), are
constructed. In Fig. 3(b), the intersection lies on neither of the two
line segments. Only one LJL, (OA, O, OC), is constructed.

2.2. LJL description

The relationship between the junction and the two line seg-
ments in a LJL is invariant under image transformations, which is
exploited by our method to generate our proposed LJL descriptor.
Inspired by SIFT [1], we construct gradient orientation histograms
in the local region around the junction in a LJL to generate the LJL
descriptor. Refer to Fig. 4, the local region covered by two con-
centric circles centered at the junction is exploited. The radius r of
the smaller circle is half as that of the bigger one. The two circles
are divided by the two line segments in the LJL and their exten-
sions into four parts. Each part contains a sector and a ring-shaped
region, which is then evenly divided into three subregions,
resulting in that the three subregions have the same area with the
sector. Therefore, there are totally 16 regions, two groups of eight
regions with the same areas, for constructing gradient orientation
histograms with 8 bins, producing a vector of 128 dimensions as
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the descriptor of a LJL. The strategy of assigning a weight to the
gradient magnitude of a sample point and the way of eliminating
boundary effects are the same as those in SIFT. A normalization on
the description vector is necessary to reduce the effect of illumi-
nation change. Since a LJL descriptor is generated by concatenating
two groups of histograms constructed in regions with different
areas and the numbers of sample points contributing to the his-
tograms are different, the normalization should be conducted
separately among each group of eight histograms constructed in
regions with the same area. After that, same as SIFT, a truncation of
large gradient magnitudes at a certain value, v (v¼0.3 in this
paper), is applied to give greater emphasis on the distribution of
the orientations.
2.3. LJL matching

To match LJLs from two images, the general way is to evaluate
their description vector distances. But since each LJL consists of
two line segments and their intersecting junction, there is addi-
tional information available for disambiguation. The two line
segments in a LJL locate in a local region, indicating that the
crossing angle of the two line segment should vary at a small
range under most image transformations. As illustrated in Fig. 5,
the crossing angle remains invariant with translation, rotation,
scale transformations, and changes slightly with moderate affine
change. For a test pair of LJLs, suppose θ1 and θ2 denote the
crossing angle of the two line segments of the two LJLs, respec-
tively, the absolute difference of θ1 and θ2, θ¼ jθ1�θ2 j should be
a small value (θ¼ 301 in this paper) if the LJL pair is a correct
match. This constraint can help discard many false candidates
before evaluating their description vectors and thus contributes to
better matching results.

If a pair of LJLs satisfy the above constraint, we then evaluate
their description vectors. The proposed LJL descriptor is based on a
fixed-size window, which implies its inability of processing images
with scale changes. The following strategy is proposed to solve this
problem. Refer to Fig. 6, we build Gaussian image pyramids for
both the images to be matched and adjust, if image sizes change,
LJLs constructed in original images to fit each image in the pyr-
amids and describe them in that image. Therefore, the descriptor
of a LJL formed in the original images comprises a set of sub-
descriptors computed in different levels of the image pyramids,
which necessitates the descriptors of a pair of LJLs to be evaluated
in a special manner. Suppose L and L0 are two LJLs to be evaluated
and D¼ fDigL�1

i ¼ 0 and D0 ¼ fD0
jgL�1
j ¼ 0

are their descriptors, where L
denotes the number of levels of the pyramids. It is the product of
the number of the octaves in a pyramid, o, and the number of
scales in each octave, s. In this paper, we empirically set o as 4 and
s as 2, and thus L equals 8. Di and D0

j denote the sub-descriptors of
L in the i-th level and the sub-descriptors of L0 in the j-th level,
respectively. The distances between each sub-descriptor in D and
all sub-descriptors in D0 are calculated, and then the average of the
k (set as 2 in this paper) smallest distance values among
fJDi�D0

j JgL�1
i ¼ j ¼ 0

is regarded as the distance between D and D0.
Those LJL pairs whose description vector distances are smaller
Fig. 5. The changes of the crossing angle of the two line segments in a LJL with different
(b), rotation (c), scale (d) and affine (e) changes.
than a given threshold dv (dv¼0.5 in this paper) are regarded as
candidate LJL matches.

The above strategy is reasonable because if L and L0 are two LJLs
in correspondence, since their descriptors are composed of a set of
sub-descriptors calculated in different scales, there always exist at
least one pair of sub-descriptors which are computed in the (almost)
same scale if the levels of image pyramids are sufficient, and, theo-
retically, their description vector distance is smallest among all the
sub-descriptor pairs. In case that a pair of sub-descriptors which are
calculated in different scales but accidentally have the smallest
description vector distance, which is often the case when the number
of candidates is great and the dimension of the descriptors is high, it
is better to use the average of the k smallest values among the vector
distances of all the sub-descriptors as the description vector distance
of the candidate LJL pair.
3. LJL match propagation

Point matches, the junction pairs of LJL matches, can be used to
recover the fundamental matrix by using RANSAC. After that, we
obtain the fundamental matrix as well as a group of LJL matches
consistent with it. Based on these, we commence propagating LJL
matches among the unmatched LJLs. The LJL match propagation is
achieved by progressively increasing the threshold for the point-
to-epipolar-line distance of an accepted point match according to
the fundamental matrix. LJL pairs with smaller distances of their
junctions according to the fundamental matrix are matched first
and then served as the basis for the next iteration of introducing
new LJL matches. The topological distribution constraint on cor-
responding LJLs and their neighboring corresponding points is
exploited to filter false matches while guiding the process of
adding new matches.

A correct LJL match should be consistent with their neighboring
point matches in the topological distribution. Refer to Fig. 7,
(OA, O, OB) and (O0A0, O0, O0B0), referred as L and L0, are a pair of
LJLs in correspondence from two images. The junction and the two
line segments as well as their extensions in each matched LJL form
a coordinate-like structure. Neighboring matched points, the
junctions in matched LJLs, distribute in different quadrants of the
coordinates. We collect the n (n equals the smaller one between 10
and the total number of matched points in this paper) nearest
matched points as ~M ¼ fmigni ¼ 1 and ~M 0 ¼ fm0

jgnj ¼ 1
to the junc-

tions O and O0 in L and L0, respectively. If ðL;L0Þ is a correct match,
the following two conditions must be satisfied. The first one is that
there should exist a sufficient large proportion, p1 (p1¼0.5 in this
paper), of correspondences in ~M and ~M0

. In addition, if miA ~M
and m0

jA
~M 0

are the correct correspondences, they should be in
the same quadrants of the two coordinates formed by L and L0 in a
high probability. So, the second condition is that among the cor-
respondences in ~M and ~M 0

, those with the same quadrants
should account for a big proportion, p2 (p2¼0.8 in this paper).

After the first stage of our method, we obtain the set of LJL
matches, ML, and the two sets of unmatched LJLs, UL and U 0

L, from
the two images, respectively. In this match propagation stage, we
refine the set ML by adding new LJL matches from UL and U 0

L, and
transformations. (a) The original LJL; (b)–(e) the transformed LJLs, with translation



Fig. 6. An illustration of describing and matching a pair of LJLs in a multi-scale Gaussian image pyramid scheme.

Fig. 7. An illustration of the distribution of a pair of corresponding LJLs, (OA, O, OB)
and (O0A0 , O0 , O0B0), and their neighboring matched points brought by matched LJLs.
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eliminating the possible false ones in an iterative scheme. While
adding new LJL matches, each LJL in UL is evaluated to all LJLs in U 0

L.
For a test pair of LJLs, it will be checked by the following three
constraints in order. First, the point-to-epipolar-line distances of
the pair of junctions in the two LJLs should be less than some
threshold de. The value of de is set to 1 in the initial iteration and
increased by adding 1 in each subsequent iteration. Most false test
pairs can be filtered out based on this constraint. Second, their
description vector distance is less than a given threshold dv
(dv¼0.5 in this paper). Third, the two LJLs should meet the topo-
logical distribution constraint presented in the above paragraph.
Some new LJL matches would be generated after the above steps
and bring in new point matches. Under the new group of point
matches, some LJL matches used to be consistent with their
neighboring point matches may turn out to be inconsistent with
them and therefore need to be filtered out. The procedures of
adding new LJL matches and filtering out possibly false ones are
conducted iteratively until no new LJL matches are added or the
iterative times is greater than 5.
4. Individual line segment matching

Line segments that have not been matched along with LJLs in
the above two stages are further matched in individuals in the last
stage of our method. They are first grouped according to those
matched LJLs, and then matched in each two corresponding
groups based on the local homography recovered from the pair of
matched LJLs in the two groups.
4.1. Individual line segment grouping

Let ML ¼ fðLv;L0
vÞgVv ¼ 1 be the set of V LJL matches identified

before, where ðLv;L0
vÞ denotes the v-th LJL match. Let K¼ fligMi ¼ 1

and K0 ¼ fl0jg
N

j ¼ 1
be the two groups of individual line segments,

which have not been matched before, from two images, respec-
tively. For each individual line segment liAK or l0jAK0, we search u
(u¼3 in this paper) of its nearest matched LJLs whose junctions
close to the line segment. The line segment is then assigned into
these corresponding u groups. In this way, each matched LJL col-
lects zero to multiple individual line segment(s). Then, for each
matched LJL, we divide the individual line segments it collects into
four groups according to the positions of these line segments
relative to the matched LJL. As illustrated in Fig. 7, a LJL forms a
coordinate-like structure. The individual line segments this LJL
collects distribute in its four quadrants. For each such line seg-
ment, if any of its two endpoints lies in a certain quadrant of the
coordinates formed by the LJL, the line segment is put into the
corresponding group. In this way, the individual line segments in
K and K0 form two sets, U ¼ fIp

m jm¼ 1;2;…;V ; p¼ 1;2;3;4g and
U 0 ¼ fI 0q

n jn¼ 1;2;…;V ; q¼ 1;2;3;4g, respectively, where Ip
m and

I 0q
n are the individual line segment sets whose elements are col-

lected from K and K0, respectively. Then, the line segments from
each two corresponding sets, Ip

m and I 0q
n , when m¼n and p¼q, are

evaluated and matched separately. Under this grouping strategy,
each line segment may be put into several groups. Despite that, in
most cases, this may lead to multiple evaluations of some pairs of
line segments, it is still necessary to do so to ensure that potential
corresponding line segments would be assigned into at least one
pair of groups in correspondence and be evaluated at least
one time.

4.2. Local homography estimation

We have assumed that the two line segments forming a LJL are
coplanar in 3D space, and therefore a LJL match provides two
coplanar line segment matches, which can be used to estimate a
local homography with the combination of the estimated funda-
mental matrix.

A planar homography H is determined by eight degrees of
freedom, necessitating 8 independent constraints to find a unique
solution. However, when the fundamental matrix F between two
images is known, then H>F is skew-symmetric [33] as

H>FþF>H¼ 0: ð1Þ
The above equation gives five independent constraints on H, and
the other three are required to fully describe a homography. One



Fig. 8. An illustration of evaluating a pair of candidate line segment corre-
spondences using the estimated local homography. l and l0 are the two line seg-
ments to be evaluated, lh and l0h are their correspondences mapped by the esti-
mated homography.
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line match provides two independent constraints [34], resulting in
the system that is over-constrained since two coplanar line mat-
ches exist in our case.

The homography induced by a 3D plane π can be represented
as

H¼A�e0v> ; ð2Þ
where the 3D plane is represented by π¼ ðv> ;1Þ in the projective
reconstruction with the camera matrices C¼ ½Ij0� and C0 ¼ ½Aje0�.
The homography maps a point from one 2D plane to another 2D
plane. For a line segment match ðl; l0Þ, suppose x is an endpoint of l,
the homography maps it to its correspondence point x0 as

x0 ¼Hx: ð3Þ
Since l and l0 correspond with each other, x0 must be a point lying
on l0, which results in

l0 >x0 ¼ 0: ð4Þ
Combining (2)–(4), we obtain

l0 > ðA�e0v> Þx¼ 0: ð5Þ
Arranging the above equation, we finally get

x> v¼ x>A> l0

e0> l0
; ð6Þ

which is linear in v. Each endpoint of a line segment in a line
match provides a constraint equation, and two line segment
matches totally provide four constraint equations. A least-square
solution of v can be obtained from the four equations. The local
homograpy H is then computed from Eq. (2).

4.3. Individual line segment matching

After grouping, the individual line segments in one group from
an image are only evaluated and matched with the individual line
segments in the corresponding group from the other image, which
decreases the candidate pairs that need to be evaluated and thus
improve the efficiency of our method and also the accuracy of line
matching results since less interferences are involved when find-
ing the correspondence for a line segment. Suppose l and l0 are a
pair of individual line segments to be evaluated and they are
collected by the pair of matched LJLs, L and L0, respectively. The
LJL match, (L, L0), brings one point match, (j; j0), and two line
segment matches, (lm; l

0
m) and (ln; l0n). From L and L0, the local

homography, H, is estimated, using the strategy presented in
Section 4.2.

We first check whether the rotation angle of l and l0 is con-
sistent with the rotation angles of the two pairs of matched line
segments brought by L and L0. Correctly matched line segments in
local regions possess similar rotation angles under image trans-
formations. Suppose the rotation angle of lm and l0m is σm, and that
of ln and l0n is σn, If there exists

σ�σmþσn

2

�
�
�

�
�
�oβ; ð7Þ

where σ denotes the rotation angle of l and l0, and β is a user-
defined angle threshold set as 201 in this paper, we accept (l; l0)
temporarily as a candidate match and take it for further
evaluation.

We then evaluate the candidate match (l; l0) by the local
homography estimated from (L, L0). This method is reasonable
only when the 3D correspondence(s) of l and l0 lie in the same 3D
plane as that of the 3D correspondences of lm (l0m) and ln (l0n). It is
hardly possible to determine whether the 3D correspondences of
several 2D line segments are in same 3D plane without the pro-
jective information of the cameras. But the strategies used in our
algorithm ensure the rationality of this method. The first is the
exploitation of the local spatial proximity. Line segments adjacent
with each other in 2D images are highly possible to be coplanar in
3D space. The two line segment triples, (lm, ln, l) and (l0m, l

0
n, l

0), are
clustered based on the local spatial proximity, which guarantees a
fairly high possibility that the 3D correspondences of the line
segments in the two triples are on the same plane. On the other
hand, the success of matching the two LJLs, though we cannot
absolutely ensure the correctness of the matching, substantiates
that the 3D correspondences of lm (l0m) and ln (l0n) are on the same
3D plane. The second is the redundant grouping strategy. Each
individual line segment is redundantly collected by several
neighboring matched LJLs, which greatly increases the possibility
that two potential corresponding line segments are distributed
into at least one pair of groups where they are coplanar with the
two pairs of matched lines in 3D space.

If (l, l0) is a correct match, the correspondences of the two
endpoints of l, mapped by the estimated local homography, must
be adjacent with (ideally on) l0, and the same goes with the end-
points of l0. We use the affect region of a line segment to apply this
constraint. The affect region of a line segment is illustrated in
Fig. 2. It is a rectangle around the line segment with a parameter
controlling the size of the rectangle. This parameter w (see Fig. 2)
is set as 3 in pixels when applying this constraint. Refer to Fig. 8,
we map l and l0 to their correspondences by the estimated local
homography, generating lh and l0h for l and l0, respectively. If both lh
and l0h intersect with the affect regions of l0 and l (the rectangles
filled in yellow around l0 and l), the match (l, l0) is temporarily
accepted and is taken for further evaluation. Here, a line segment
intersects with a region means there exists at least one point (not
just the two endpoints) on the line segment which is within the
region. We define the average of the four distances, including the
perpendicular distances of two endpoints of l0h to l and the per-
pendicular distances of the two endpoints of lh to l0, as the
mapping error of (l, l0), which is used to measure the similarity of l
and l0. The four distances are denoted as d1, d2, d3 and d4 in Fig. 8,
then, the mapping error of (l, l0) is:

Eðl; l0Þ ¼ d1þd2þd3þd4
4

: ð8Þ

While finding the correspondence for a line segment, the above
constraints are unable to discern the false candidates when they
have similar directions with the correct one and are adjacent with
it. Refer to Fig. 9, while we find the correspondence for l, both l01
and l02 may be accepted by the above constraints because they are
close with each other and have similar directions. We use a simple
but effective way to enforce the constraints on correct line seg-
ment matches by finding the brighter sides of line segments. Refer
to Fig. 9, we calculate the average intensity values of pixels in the
two small rectangles lying in the two sides of a line segment and
regard the side where the average intensity value is higher as the
brighter side. Since the brighter side of a line segment indicates
the relative brightness of the two small regions along with a line
segment, it is invariant under almost all image transformations
and thus can be exploited to find the correct correspondences for
line segments. In Fig. 9, we finally pick out l01 as the correct cor-
respondence of l since it has the same brighter side as l.



Fig. 9. An illustration of using the brighter side constraint to help match line segments. l is a line segment from a image. l01 and l02 are the two candidate correspondences for l
from the other image. l01 is accepted as the correspondence for l because its brighter side is the same as l.
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After that, there may exist the cases that one line segment in
one image is matched with several line segments in the other
image. We select the pair with the minimal mapping error as the
correct match and reject the others.
5. Experimental results

Extensive experiments on representative image pairs were
conducted to select proper values for some parameters of the
proposed method and to evaluate its performance under various
image transformations and in some special scenes, as well as to
compare it with the state-of-the-art line matching methods.

5.1. Parameter selection

Our algorithm has some parameters, but only two of them are
key to influence the performance of the algorithm. Other para-
meters are used to strengthen some constraints and the fluctua-
tions of their values make slight differences on the results. The
first parameter is w which controls the size of the affect region of a
line segment when constructing LJLs. The second parameter is r,
the radius of the smaller of circle when describing a LJL. The five
representative image pairs [37] shown in Fig. 10 were employed to
help fix the two parameters. There are illumination change, image
blur, JPEG compression, viewpoint change, scale and rotation
changes between the two images in the five image pairs in order.
Since the two images in each image pair are related by a known
homography, we can evaluate the performance generated by dif-
ferent parameters conveniently and reliably, which benefits us to
select optimal values for the parameters.

We first conducted experiments to select a proper value for w.
It is obvious that a big value for w results in a big affect region of a
line segment and more intersections of line segments and more
LJLs. Sufficient LJLs are the guarantee to produce enough initial LJL
matches and are therefore crucial to the final line matching results
because the subsequent steps of adding more line segment mat-
ches are based on the initial LJL matches. However, excessive LJLs,
especially when many of them cannot find their correspondences
in the other group of LJLs, will harm the matching of them since
more interferences are introduced, and will increase both the
computation time and memory to match them. We employed the
way introduced in [37] by calculating the repeatability of two
groups of points to select a proper value for w. In [37], the
repeatability score is used to evaluate different local region
detectors under various image transformations. It measures how
the number of correspondences depends on the transformation
between two images. Higher repeatability indicates better per-
formance of the image feature detection and is generally more
conducive for matching these features. We calculated the repeat-
ability of the junction points in constructed LJLs under various
values of w and fixed w at the value with the highest repeatability.
All the five image pairs shown in Fig. 10 were employed for
experiments and the average repeatability of the junctions in
constructed LJLs in all image pairs is calculated. The change of the
average repeatability with respect to w is shown in Fig. 11. We
observe from this figure that the repeatability curve increases
when w is less than 20, and is stable until w is bigger than 25,
where the curve begins to drop. Thus, both 20 and 25 are proper
values for w. To reduce the computation time, w¼20 was selected
in this paper.

We then conducted experiments to find a proper value for the
parameter r, which determines the size of the local patch exploi-
ted for describing a LJL. The LJL descriptor is often more dis-
criminative but more sensitive to shape distortion when a bigger
patch is used. Table 1 shows the accuracies of the matching results
of the LJLs with various values of r on the five image pairs shown
in Fig. 10. Since the average accuracy reaches its maximum at
r¼10, this setting was therefore applied in our algorithm. Note
that the correctness of a LJL match is assessed in this way: let (j; j0)
be the pair of junctions in a LJL match, we map j and j0 by the
known homography, generating their estimated correspondences,
jh and j0h, for j and j0, respectively. If both the distance between j0h
and j and the distance between jh and j0 are less than 5 pixels, we
regard the LJL match as a correct one. This correctness-assess
strategy for point matches seems problematical since it may label
a false point match as a correct one when one point in the match
lies near the actual correspondence of the other point. However,
since in our situation, the matched points are the intersecting
junctions of line segments, the distribution of which is often much
sparser and their numbers are often smaller than the detected
feature points by some detectors. The cases that several matched
points cluster in a very small region are scarce. This fact ensures
the reasonableness of our correctness-access strategy and the
reliableness of the value we set for r.

5.2. Robustness of the LJL descriptor

After the key parameter for constructing a LJL descriptor being
fixed, we conducted experiments to compare our LJL descriptor
with other local region descriptor(s) for the effectiveness to
describe the local regions around LJLs. The famous SIFT descriptor
[1] was employed for the comparison. The two descriptors, LJL and
SIFT, were used to describe the junctions in the constructed LJLs on
the five image pairs as shown in Fig. 10. The junctions were mat-
ched under the same threshold for their description vector dis-
tances for both the descriptors. Note that since both SIFT and LJL
are based on fixed-size windows and are unable to deal with scale
changes, we described the junctions in LJLs using the two
descriptors both in the multi-scale image pyramid framework we
proposed in Section 2.3.

Table 2 shows the accuracies of the matching results of the two
descriptors. It can be observed from this table that on all of the five
image pairs, where various extreme image transformations exist,
the proposed LJL descriptor produced matching results with
higher accuracies than SIFT. On some image pairs, graffiti and boat,
the advantage is fairly remarkable: the results of LJL descriptor
present the accuracy more than twice as that of SIFT. This good
performance of our LJL descriptor on the matching accuracy is
crucial for our method because it requires estimating a precise



Fig. 10. The five image pairs, leuven, bikes, ubc, graffiti, and boat, used for selecting proper values for the two key parameters in our method and for evaluating the proposed
LJL descriptor.

Fig. 11. The changes of the average repeatability of the junction points in the con-
structed LJL from images shown in Fig. 10 with different values of the parameter w.

Table 1
The accuracies of the LJL structure matching results on the five image pairs shown
in Fig. 10 under various values of the parameter r.

r¼4 r¼6 r¼8 r¼10 r¼12 r¼14

leuven 0.81 0.85 0.87 0.84 0.85 0.84
bikes 0.63 0.64 0.61 0.59 0.58 0.60
ubc 0.74 0.74 0.77 0.72 0.72 0.69
graffiti 0.30 0.45 0.64 0.76 0.69 0.65
boat 0.09 0.21 0.31 0.44 0.40 0.27
Average 0.51 0.58 0.64 0.67 0.65 0.61

Table 2
The comparative junction point matching accuracies based on the description by
the proposed LJL descriptor and SIFT descriptor on the five image pairs shown in
Fig. 10.

leuven bikes ubc graffiti boat

LJL 0.84 0.59 0.72 0.76 0.44
SIFT 0.71 0.48 0.71 0.37 0.19
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fundamental matrix from the initial LJL matches. A large propor-
tion of correct matches certainly contribute to better estimation
result of the fundamental matrix. We did not use the well-known
local descriptor evaluation method introduced in [36] because the
proposed LJL descriptor is specially designed for LJLs. It describes
the circular regions centered at the junctions in LJLs, rather than
affine invariant regions detected by some detectors, which is the
prerequisite of that famous local descriptor evaluation method.

The better performance of our proposed LJL descriptor over
SIFT in describing the local regions around the junctions of LJLs
owes to the following two factors. The first one is that the regions
for constructing the orientation histograms for LJL descriptor are
more likely to correspond with each other for corresponding
junctions than that of SIFT. We have clear and precise dominant
directions to deal with possible rotation changes. Either of the
directions of the two line segments forming a junction can be
regarded as the dominant direction of the junction, according to
which the region exploited for constructing the orientation his-
tograms is rotated. While in SIFT, the dominant direction of a point
is calculated from its neighboring region, which is absolutely less
precise than ours. Besides, the configuration of the two line seg-
ments forming the junction in a LJL is exploited for dividing the
region around the junction into subregions, where the orientation
histograms are constructed. Since the two line segments are clear
and precise, subregions divided by them are more likely to cor-
respond with each other for corresponding junctions than that of
SIFT, in which subregions are obtained by dividing the region
regularly with the same angle span (90°). The second one is the
exploitation of the constraint that the crossing angle of the two
line segments in a LJL should vary in a small range under image
transformations, which helps discard many false candidate LJL
pairs before evaluating their description vector distances and
hence contributes to better matching results.

5.3. Line matching results

Fig. 12 shows the line matching results of the proposed method
on eight representative image pairs which contain various image
transformations and were captured from both planar and non-
planar scenes. All these image pairs were used in the published
papers [22,37], except the image pair (d), in which a poorly tex-
tured scene was captured in the two images. The aim we
employed this image pair is to evaluate the performance of our
method in poorly textured scenes. The line segments used for
matching were extracted by the famous line segment detector, LSD
[35]. The correctness of the obtained matches was accessed by
visual inspection.

It is observed that our algorithm is robust under common
image transformations, namely illumination, scale, rotation,
viewpoint changes, image blur, and JPEG compression and in
poorly textured scene. The accuracies are above 95% on all the
image pairs. The robustness of our method owes to the following
factors. The first one is the robust LJL descriptor. It is specially
designed for LJL while incorporates many benefits of SIFT, leading



Fig. 12. The line matching results of the proposed method on eight representative image pairs. We will refer the eight image pairs as (a)–(h) for later use. In the caption of
each subfigure, ðD1 ;D2Þ denotes the pair of numbers of the extracted line segments in the two images. T represents the number of total matches found by the proposed
method between the two sets of line segments extracted from the two images. F and A denote the number of false matches among the total matches and the corresponding
accuracy, respectively. Two line segments in correspondence from a pair of images are drawn in the same color and are labeled with a same number at the middles. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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to its robustness and high effectiveness for matching LJLs. The
second one is the adopted match-propagation strategy. Through
the exploitation of the topological distribution consistency
between LJL matches and their neighboring point matches and the
recursive scheme of adding new matches while deleting possibly
false ones, the group of LJL matches is expanded while false
matches are well limited. The third one is the novel approach of
matching individual line segments by utilizing local homographies
recovered from neighboring corresponding LJLs. This strategy is
unaffected by most image transformations.

Fig. 13 shows the incremental process of finding correct line
matches in different stages of our method on the eight image pairs
shown in Fig. 12. It is observed from this figure that the propor-
tions of the correct matches found in different stages accounting
for the total correct matches vary greatly on different image pairs.
For example, the correct matches found in the first stage account
for nearly 90% of the total correct matches on the image pairs
(b) and (c), while less than 50% on the image pairs (e) and (g). On
all the image pairs, the correct matches found in the second stage
account for a small part of the total correct matches. This is
because most LJL matches were found correctly in the first stage,
and there were only a few left to be found. However, the second
stage still plays an important role in the algorithm, not only
because some new LJL matches would be added, but also because
the false matches introduced in the first stage are eliminated in
this stage, which is significant for limiting false line matches.

While counting the numbers of correct matches obtained in
different stages of our method, we found that, on all the image



Table 3
The comparative line matching results of our method and three state-of-the-art
line matching methods: LPI [22], LS [31] and RPR [32]. The dual elements shown in
the table represent the number of correct matches and the accuracy, respectively.
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pairs, almost all false matches among the final line matches are
introduced in the third stage, in which line segments are matched
in individuals by utilizing the local homographies estimated from
their neighboring LJL matches. This is because the homography
estimated from a pair of matched LJL is not so precise. If the line
segments in a LJL match are not so precisely detected and located,
the homography estimated from them would fluctuate around the
precise one. When several line segments cluster in a small region
of an image, this not so precise homography may lead to the
method's incapability of picking out the best correspondence.
However, since some additional constraints are applied when
matching line segments in individuals, false matches are well
controlled in our method.

We then compared our method with the state-of-the-art line
matching methods. Three methods were employed for the com-
parison. The first one matches line segments in individuals, Lines-
Points Invariant (LPI) [22]; the second one matches line segments
in groups, Line Signature (LS) [31]; and the last one is our previous
work Ray-Point-Ray (RPR) [32]. The implementations of LS and LPI
were provided by their authors. To eliminate the influence of
different line detection methods on the line matching results, we
took line segments used by these three methods as input for our
method. The comparative results are shown in Table 3. Note that
the results of LPI on some image pairs shown in this table are
somewhat different (generally better) from that shown our pre-
vious paper [32]. This is because the provided implementation of
LPI only uses the line segments whose lengths are above 20 pixels
as input for line matching. But while doing experiments, we found
that the line matching results of LPI became better, quite more
Fig. 13. The incremental process of finding correct line matches in different stages
of the proposed method. The number in each bin denotes the number of correct
line matches found in the certain stage on the certain image pair.

Fig. 14. Six image datasets characterized by various image transformations. There are si
the last are shown here.
correct matches and comparable accuracy, if we removed the
requirement for the lengths of the line segments to be used for
matching. So, this paper shows only the better results of LPI while
our previous paper shows the results generated by the original
implementation of LPI. Since the provided implementation of LPI
also uses LSD [35] for extracting line segments, the results of our
methods using line segments provided by LPI shown in the table
are the same as those shown in Fig. 12.

Several interesting observations can be made from Table 3. The
first is that on the same image pairs, when using different line
segments as input, the line matching results of the same method
vary a lot, both in the numbers of correct matches and the cor-
responding accuracies. For example, on the image pair (e), where
great scale and rotation changes exist, our method generated fairly
good result, 144 correct matches with the accuracy of 95.4% when
using the line segments provided by LPI. However, the corre-
sponding result drops drastically with only 33 correct matches at
the accuracy of only 49.3% when using the line segments provided
by LS. The second is that when using the line segments provided
by LPI as input, our method produced more correct matches on all
image pairs than that of LPI, and the average accuracy is higher
despite that on the image pairs (a) and (d), the accuracies are
slightly lower. On the image pair (g), where great image blur
exists, our method produced nearly 4 times of correct matches
than that of LPI. The third is that when using the line segments
The last row represents the average accuracy of the generated results.

LPI lines LS lines RPR lines

Ours LPI Ours LS Ours RPR

(a) (214,
97.5%)

(136,
99.3%)

(257,
99.2%)

(189,
97.9%)

(171,
97.2%)

(124,
99.2%)

(b) (362,
99.7%)

(328,
99.4%)

(579,
99.3%)

(241,
99.6%)

(298,
100%)

(240,
100%)

(c) (789,
99.6%)

(735,
99.5%)

(1229,
99.1%)

(269,
99.3%)

(699,
99.6%)

(546,
99.6%)

(d) (32,
97.0%)

(16,
100%)

(31,
96.9%)

(42,
95.5%)

(24,
100%)

(23,
95.8%)

(e) (144,
95.4%)

(82,
94.3%)

(33,
49.3%)

(0, 0) (118,
94.4%)

(16,
94.1%)

(f) (309,
99.4%)

(276,
99.3%)

(526,
99.1%)

(214,
99.7%)

(260,
97.7%)

(124,
99.2%)

(g) (323,
96.7%)

(82,
93.2%)

(205,
94.0%)

(17,
73.9%)

(151,
92.1%)

(0, 0)

(h) (342,
96.1%)

(225,
93.4%)

(311,
95.4%)

(126,
92.6%)

(259,
95.6%)

(137,
94.5%)

Average (%) 97.7 97.3 91.5 82.3 97.1 85.3

x images with gradual image transformation in each dataset, and only the first and



K. Li et al. / Neurocomputing 184 (2016) 207–220 217
detected by LS as input, our method has quite better performance
than LS itself. Due to the multi-scale scheme, LS produced large
groups of line segments, which caused matching them being very
time-consuming and memory-consuming. With such large groups
of line segments as input, compared with LS, our method pro-
duced line matches with much higher average accuracies and
owned an overwhelming advantage in the amount of correct
matches on some images pairs. Our method found more than 12
times of correct matches than that of LS on the image pair (g) and
nearly 5 times of correct matches on the image pair (c). Besides, on
the image pair (e), LS failed to produce any correct line match,
while our method can still produce some through with a low
accuracy. The fourth is that, by taking the line segments used in
RPR as input, the proposed method excels both at the amount of
correct matches and the accuracy. Remarkably, RPR failed on the
image pair (g), where there is great blur between the two images,
while the proposed method can still produce good results. It
generated 151 correct matches with the accuracy of 92.1%. These
advantages of the proposed method over RPR prove the effec-
tiveness of the promotions we have made based on RPR.

5.4. Further comparison with LPI

From Table 3, we can conclude that our method and LPI are the
two most robust line matching methods. We conducted additional
experiments to further evaluate the two methods.

We first experimented on some datasets related by global
homographies. The six image datasets [37,17] shown in Fig. 14
were employed. These image datasets are characterized by illu-
mination, rotation, viewpoint and scale changes, image blur and
JPEG compression among the images, respectively. The reason we
employed them for experiments is because the global homo-
graphies between images in the datasets are known. Thus, the
ground truth of the line segment matches between images can be
established by mapping line segments detected in one image to
another one and finding if there are line segments in the very close
regions around the mapped line segments. With the ground truth
of line segment matches between images, the recalls (the ratio
between the number of correct matches and the number of
Fig. 15. The recalls of the line matching results of the proposed me
ground truth correspondences) of line matching results of these
two methods can be calculated. In each datasets, the line segments
detected in the first image were matched with those detected in
the other five images. The recalls of the matching results for the
two methods are shown in Fig. 15. It is observed from this figure
that the recalls of the line matching results generated by our
method are higher than those of LPI on almost all image pairs
under all these six kinds of image transformations except the two
image pairs where JPEG compression between images exists.

Besides experimenting on the common datasets, we had con-
ducted additional experiments on some very challenging image
pairs. The experimental results are shown in Fig. 16, from which
we can observe that under these challenging cases, our method is
more robust and produces quite more correct matches.
6. Discussion

All the line matching results of our method presented above
are based on the fixed parameters, which we have discussed in
Section 5.1. In this section, we will discuss further about how to
adjust the values of some parameters to improve the performance
of our method for some specific applications.

6.1. Time performance

Fig. 17 shows the elapsed time of each stage of our method and
the percentage it accounts for the corresponding total elapsed time
on each of the eight image pairs shown in Fig. 12. The proposed
method was implemented with Cþþ and the computation time
was measured on a 3.4 GHz Inter (R) Core(TM) processor with
12 GB of RAM. It can be observed from this figure that the total
elapsed time of our method varies a lot on different image pairs.
Our method took nearly 660 s on the image pair (c) while less than
2 s on the image pair (d). Generally, the more complex the scenes
captured are, the more time it takes for our method to match the
line segments extracted from the images. This is because more line
segments can be detected in images of complex scenes and
matching larger groups of line segments costs more time. Another
thod and LPI [22] on the six image datasets shown in Fig. 14.



Fig. 16. The comparative results between our method and LPI on some challenging image pairs. Zoom in for better interpretation.

Fig. 17. The elapsed time (in seconds) of each stage of our method and the per-
centage it accounts for the corresponding total elapsed time on each of the eight
image pairs shown in Fig. 12. The number in each bin denotes the elapsed time of
the proposed method in a certain stage on a certain image pair.

Table 4
The line matching results and running time of the proposed algorithm generated by
building Gaussian image pyramids (M-I) and without building Gaussian image
pyramids (M-II) on some image pairs shown in Fig. 12. The last column shows the
drop ratios of the running time of M-II relative to M-I.

Matching results Running times (s)

M-I M-II M-I M-II Drop (%)

(a) (214, 97.5%) (212, 99.1%) 56.3 11.2 80.1
(b) (362, 99.7%) (379, 99.2%) 74.3 27.2 63.4
(c) (789, 99.6%) (786, 99.6%) 658.9 241.5 63.3
(d) (32,97.0%) (24,100%) 1.9 0.7 62.0
(f) (309, 99.4%) (317, 99.1%) 61.4 13.9 77.4
(h) (342, 96.1%) (334, 96.5%) 75.0 12.4 83.5
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observation from this figure is that the time spent in the first stage
of our method makes a dominant account for the total elapsed time
on all image pairs. The reason behind is that by building image
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pyramids, each LJL constructed in the original images is adjusted to
all images in the pyramids and is described there. The time of
describing and matching LJLs from two images increase with the
number of the levels of the image pyramids. For example, on the
image pair (c), which took the most time by our method, 4856 LJLs
were constructed in the first image and 4693 LJLs in the second
image. When the Gaussian image pyramids built for the two ori-
ginal images have 4 octaves with 2 scales in each octave, there are
4856�8¼38,848 LJLs and 4693�8¼37,544 LJLs required to be
described for the two images, respectively. A LJL descriptor is a
vector of 128 dimensions. It is sure that matching such large two
groups of LJLs by evaluating the distances between their description
vectors in such a high dimension is time-consuming. It seems that
our method is impractical for some applications which have strict
requirement on the running time. However, the time performance
of our method can be tremendously improved by adjusting some
parameters for specific scenes.

The majority of the running time of our method was spent in
describing and matching LJLs from two images. There are three
parameters that control the number of the LJLs to be described and
matched. These three parameters are w that controls the size of
the affect region of a line segment, o, the number of octaves of the
image pyramids, and the number of scales per octave of a pyramid,
s. Both o and s are introduced when building Gaussian image
pyramids to deal with the possible scale changes between images.
If we have a priori that there is no or merely slight scale change or
some fixed scale change between images, then all the steps
intended to deal with scale changes between images are needless.
We can match LJLs constructed in the original images or some
specifically scaled ones directly, which would save plenty of time.

Table 4 shows the comparative line matching results and the
corresponding running time on the six image pairs, (a)–(d), (f) and
(h) shown in Fig. 12, with building the Gaussian image pyramids
(M-I), and without building the Gaussian image pyramids (M-II).
All these six image pairs share the similarity that there are very
little scale changes between the two images and thus building
Gaussian image pyramids is unnecessary for them. From Table 4,
we can see that the matching results generated by M-II are similar
with M-I both in the amounts of correct matches and the accuracy,
but the running time dropped drastically. On the all image pairs,
M-II took less than half of the running time of M-I. Remarkably, on
the image pairs, (a) and (h), the drop ratios are more than 80%,
which means M-II used less than 20% of the running time of M-I.

Apart from choosing to not build image pyramids for images
with very little scale change to save time, decreasing the value of
the parameter w can also help reduce the running time since less
LJLs are constructed with a smaller value of w. This strategy is
especially efficient when scenes are rich-textured. For example, on
the image pair (c), where the scene has rich texture and more than
1000 line segments were extracted in both images, when the value
of w was set as 20 in pixels, our method spent 658.9 s matching the
extracted line segments when building the Gaussian image pyr-
amids and 241.5 s without building Gaussian image pyramids. But
when we set w¼5 without building the Gaussian image pyramids,
our method spent only 17.2 s and produced 788 correct line mat-
ches with the accuracy of 99.6%. The matching result is similar with
those generated under a greater value of w, but the cost time drops
drastically. So, for scenes with rich texture, selecting a smaller value
for w can greatly promote the efficiency of the method.

6.2. Poorly textured scenes

While conducting experiments, we found that for image pairs
that were captured from poorly textured scenes, if we increase the
value of the parameter w that controls the size of the affect region
of a line segment when constructing LJLs, the line matching results
are generally better. For example, on the image pair (d) shown in
Fig. 12, when we varied w from 10 to 60 at the step of 10, we
obtained 28, 33, 36, 37, 37 and 36 correct matches in order. Though
the increasing is not quantitatively significant, it is particularly
meaningful for this special scene because a more complete sketch
of the scene can be obtained with even slight increasing of the
obtained line segment matches.

The reason for the better matching results of our proposed
method on poorly textured scenes with bigger w is as follows. In
poorly textured scenes, only a small amount of line segments can
be detected. With a greater value of w, more line segments can be
regraded as adjacent line segments and used to generate junctions
and construct LJLs. More LJLs in poorly textured scenes often result
in a larger group of initial LJL matches, which improves the line
matching results in the following three aspects. First, more line
segments can be matched along with LJL. Second, a generally
precise fundamental matrix can be obtained, which helps both
propagate LJL match (in the second stage) and match line seg-
ments in individuals (in the third stage). Third, the obtained LJL
matches may distribute in more 3D planes. The third stage of our
method, matching line segments in individuals, underlies the
assumption that the 3D correspondences of the two line segments
to be matched lie in the same 3D plane lay by the 3D corre-
spondences of the two pairs of matched line segments brought by
a pair of matched LJLs. If two individual line segments whose 3D
correspondences lie in a 3D plane where none of the 3D corre-
spondences of matched LJLs exist, the two line segments cannot be
matched by our method. Thus, a larger group of initial LJL matches
can help us to bring in more individual line segment matches.
7. Conclusions

This paper has presented a hierarchical line matching method
in which line segments are first matched along with the structures
called Line–Junction–Line (LJL) formed by two adjacent line seg-
ments and their intersecting junction, and then matched in indi-
viduals. While matching LJLs, a robust descriptor as well as an
effective strategy to deal with the possible scale changes between
images is proposed to obtain the initial LJL matches, which are
then refined and expanded by an effective match-propagation
scheme. Those left unmatched line segments are further matched
by exploiting the local homographies estimated from their
neighboring LJL matches. The experimental results show the
robustness of the proposed LJL descriptor for matching LJLs and
the good performance of the proposed method under most kinds
of image transformations and in poorly textured scenes. The
superiorities of the proposed method to the state-of-the-art line
matching methods include its robustness for more kinds of
situations, the larger amounts of correct matches, and the higher
accuracy in most cases.
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