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Abstract

This paper presents a novel multi-scale edge chain de-
tector (MSEdge) to robustly extract edge chains from
images at different scales captured in a wide variety of
scenes. In contrast to the traditional edge pixel based
methods, the proposed algorithm is based on edge chains
which leads to a robuster and more complete edge detec-
tion result than the traditional ones. Firstly, the edge
chains are extracted and validated on a set of pyra-
mid images that are obtained by resizing the original
input image with different scales. Then, for each down-
sampled image, the edge chains on it are projected onto
the original image to create a mask map. The multi-scale
contrast of each pixel on the mask map is calculated and
a soft non-maximum suppression method (Soft-NMS) is
proposed to be applied on these pixels to get the edge
pixels on the original image. Thirdly, the edge chains
in different scales are merged to get a single edge map
by a novel chain based merging procedure. Finally, the
Guo-Hall thinning algorithm [ 13] and a simple connect-
ing procedure are applied on the edge map to get the
final single pixel width edge chains. Experimental re-
sults on several common used images and both the ROC
dataset and the BSDS dataset sufficiently demonstrate
the efficiency and robustness of the proposed MSEdge
as a multi-scale edge chain detector by comparing with
five state-of-the-art edge/boundary detectors.

1. Introduction

One of the most intensively studied problems in com-
puter vision concerns with how to extract edge chains on
an image for some advanced applications. Edge chains are
one of the most widely used geometric structures which can
be used to represent the silhouettes of an image. As a low
level information of an image, edge chains can be applied
on line segment detection [2, 12], object recognition [26],
image segmentation [4], and so on.

The scale of an edge is an unavoidable issue since the
very beginning of the studying on edge detection [6]. Stud-
ies on natural images have strongly suggested that the scale-
invariance or the multi-scale structure is an intrinsic prop-

erty of natural images. In general, fine scales are expected to
provide spatially accurate results, but also to be particularly
sensitive to noise. Edge chains detected in coarse scales are
more robust against noise, textures and spurious edges, but
tend to suffer from displacements of the edges from their
actual position. According to the work of [18], the multi-
scale edge detection methods can be classified into three
categories based on “the way they manage the information
obtained at different scales”.

The first group detects the edges in different scales, and
then applies some fusion procedures to get a single edge
map [6, 18]. Edge tracking is one of the most widely used
methods in the fusion procedure. In the pioneering work
of [6], the edges were firstly detected using a high degree
of smoothing on a coarse level of scale, and then a track-
ing procedure was applied to determine their precise loca-
tions over decreasing scales. Lopez-Molinaet al. [18] used
the same strategy which first sampled a finite set of images
from the Gaussian Scale-Space, then the Sobel operator was
applied on each of these images, and finally the edges were
tracked from the coarse scales to the fine ones.

The second group collects edge cues and informations in
different scales first and these multi-scale informations are
then aggregated to discriminate the edge pixels [16, 23, 22]
from an image. Training a classifier is the most widely
used method in edge cues aggregation [23, 16]. In the work
of [23], the local boundary cues including contrast, local-
ization and relative contrast are collected in multi-scales,
and then a classifier is trained to integrate them across
scales. The detection of boundaries (edges) is formulated as
a classification between boundary and non-boundary pixels.
There are also other cues aggregation methods, for example,
Özkan and Işık [22] applied the common vector approach
(CVA) to aggregate the gradient maps computed at each
scale to form a single gradient map on which a smart edge
extraction procedure was performed to give an edge map.
In [5], the responses of filters at adjacent scales were mul-
tiplied to enhance edge structures. Recently, Liuet al. [17]
introduced a method to first detect the scales of edge pix-
els using 3D-Harris based on the informations in different
scales, and then the edge segments were extracted based on
the edge pixels and their scales.

The last one determines the scale to be used at each pixel
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or subregion based on the local characteristics [15, 11].
Jeong and Kim [15] defined an energy function over the
continuous scale space, based on which the scale of each
site in the image plane was determined via minimization.
Elder and Zucker [11] defined the conception of “minimum
reliable scale” (MRS) of an event as the minimum scale in
which the event can be reliably detected by a certain op-
erator. The MRS of each point on the image was locally
calculated and applied in edge detection.

Boundary detection is a research field close to the edge
detection, especially on the aspect of multi-scale edge de-
tection. The only difference between them may be that
many of the boundary detectors “focus on large-scale salient
regions/boundaries and tend to ignore details on an im-
age” [23]. Recently, with the development of machine
learning, many boundary detection methods have been pro-
posed [24, 7, 29], which have achieved great improvement
over the traditional feature based methods.

Most of the former multi-scale detectors focus on the
properties of edge pixel across scales, however these edge
pixel based methods use only local information for edge de-
tection, which suffers from the influence of noise. For ex-
ample, a long edge chain may be split into many small frag-
ments due to the influence of noise by the pixel based meth-
ods. In this paper, in contrast to the traditional edge pixel
based methods, we propose a novel multi-scale edge chain
based detector which can get a robuster and more complete
edge detection result than the traditional ones. The pro-
posed multi-scale edge chain detector (MSEdge) belongs to
the above-mentioned first group, which detects edge chains
in different scales, then merges, instead of tracking, those
edge chains to form a single edge map, and finally applies
the Guo-Hall thinning algorithm [13] on the edge map to
get the single-pixel width edge chains.

2. Our Algorithm

Fig. 1 shows the framework of the proposed MSEdge
detector, which consists four steps. Firstly, the input im-
age is down-sampled with different scales to construct a
set of pyramid images and the edge chains are detected
and validated on these pyramid images, respectively. Then,
we propose a soft non-maximum suppression method (Soft-
NMS) to get the edge pixels from different pyramid images.
Thirdly, the edge chains in different scales are merged into
a single edge map by a novel chain based merging proce-
dure. Finally, a morphological dilation method, named as
the Guo-Hall thinning algorithm [13], and a simple edge
chain connecting procedure are applied to get the final sin-
gle pixel width edge chains.

2.1. Edge Chain Detection

2.1.1 Edge Chain Tracking

To track edge chains from the edge map, there are gener-
ally two methods. The one is performed on an edge map
after non-maximum suppression (NMS), on which the edge
chains are mostly in single pixel width. In this condition,
the tracking procedure can be achieved easily by searching
for the unprocessed edge pixels in the 8-neighbors of the
current seed pixel. Another one is proposed in the work
of [25] and named as Edge Drawing, which computes a set
of anchor edge points on an image and then links these an-
chor points by drawing edges guided by gradient orienta-
tion. In this work, we apply the former method.

Given a gray imageI, firstly a 3 × 3 Gaussian filter
with the standard deviationσ = 1 is applied to suppress
noise and smooth out the image. Then the Canny operator
with the low threshold and high threshold set as(glow, ghigh)
is performed on the smoothed image to get an edge map
E. The edge pixels onE are roughly sorted in the de-
scending order according to their gradient magnitudes and
recorded in a setP . After that, the foremost unprocessed
edge pixel inP is selected as the initial seed pixelpseed.
The 8-neighbors of thepseed are searched, if there exists a
8-neighbor that is an unprocessed edge pixel, we consider it
as the next seed pixel and add it into the current edge chain,
and then begin 8-neighbors searching from this newly added
pixel. The seed growing of the current edge chain is con-
ducted iteratively until all the pixels on this chain is pro-
cessed, and then we add the current edge chain into the edge
chain setC and begin with another edge chain from the re-
maining pixels inP .

2.1.2 Edge Chain Validation

There are many false detections in the edge chain setC,
thus an edge chain validation procedure is required to get
rid of the false ones. Wanget al. [28] proposed the “sup-
porting range” to distinguish those weak edge pixels from
their surroundings and applied a segment-based hysteresis
thresholding approach to verify the edge segments. In the
work of [10], the use of the Helmholtz principle gives a new
view on both boundary and edge chain validation, which
achieves good performance. However the Helmholtz prin-
ciple on edge chain validation is based on level lines of
the image [10]. In the work of EDPF [3], the level lines
are replaced with edge chains detected by the Edge Draw-
ing [25] method for convenience, but no convincing proofs
are given.

In this work, the edge chains that are weak on the low
levels will be salient on the high levels with the increasing
of scales, so no more specific strategy is needed to distin-
guish the weak edges from the noises. Thus, we can sim-
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Figure 1. The framework of the proposed multi-scale edge chain detector.

plify the segment-based hysteresis thresholding approach
proposed by Wanget al. [28], and use the summation of the
gradients of all the pixels on the edge chain to measure the
saliency of the edge chain. Given an image with a size of
w× h, the detected edge chain set is denoted asC, the edge
chain validation procedure is performed as follows. Firstly,
the minimum edge chain length thresholdlmm can be easily
defined as follows according to the work of LSD [27] and
CannyLines [19]:

lmm = −2.5 log(M)/ log(p), (1)

whereM = w × h is the size ofI andp = 1/8. Then,
for each edge chainC ∈ C, whose length is denoted as
l(C), the summation of the gradients of all the pixels onC

is calculated and denoted asg(C), and the edge chainC
is considered as salient enough to be kept if the following
conditions are satisfied:

l(C) ≥ lmm && g(C) ≥ lmm × gth, (2)

wheregth is the predefined gradient threshold.

2.2. Multi-Scale Edge Chain Detection

Our proposed multi-scale edge chain detection method is
a general framework which is suitable for all the edge chain
detectors. There are four steps of the proposed multi-scale
edge chain detector (MSEdge), including: edge chain detec-
tion, soft non-maximum suppression, edge chain merging
and edge chain thinning.

2.2.1 Edge Chain Detection

For a given image with a size ofw×h, we reduce the size of
the image by half with the increment of the level of scales,
which means that the size of the image on the leveln is

w/2n × h/2n, n ∈ {0, 1, 2, ..., N}, N is the highest level
predefined, which is recommended asN = 3 for general
applications. The set of these resized images is denoted as
I. Then for each imageIn ∈ I, the edge chains on it are
detected by applying the edge chain detector introduced in
Section2.1. The set of edge chains onIn is denoted asCn.

2.2.2 Soft Non-maximum Suppression

For each leveln, the scale of this level is defined assn =
2n, we try to get the corresponding edge pixels of the
edge chains inCn on the original imageI0, which is per-
formed as follows. Firstly, we traverse the imageI0, for any
pixel p0 = (x0, y0) on I0 if its corresponding scaled pixel
pn = (x0/sn, y0/sn) on In is an edge pixel, we consider
p0 to be an edge pixel hypothesis. For all these edge pixel
hypotheses, a mask image with the same size ofI0 is cre-
ated. Then, for each pixelp0 on the mask image, its gradi-
ent orientation is defined as that of the scaled pixelpn. The
reason is that the gradient orientation ofpn is more robust
than that ofp0. The gradient orientation is divided into 4
directions as the same in the traditional non-maximum sup-
pression applied in the Canny operator [9]. After that, the
image intensities of the pixels within a span equal tosn on
each side ofp0 along the gradient direction are accumulated
on theI0, we denote them asv1 andv2, respectively. The
multi-scale contrast ofp0 is then defined as|v1−v2|/sn. A
contrast map is created to record the multi-scale contrasts of
all the edge pixel hypotheses. Finally, a soft non-maximum
suppression method (Soft-NMS) is proposed to be applied
to get real edge pixels, which is conducted as follows. For
each edge pixel hypothesispi

0
on the mask image, whose

contrast isci, we search the neighboring pixels frompi
0

on
each side of its direction with a span equal tosn. If for
every neighboring pixelpj

0
whose contrast iscj , and the
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following condition is always satisfied:

ci > cj − cth, (3)

wherecth is the contrast threshold of the soft non-maximum
suppression, we considerpi

0
to be an edge pixel. Eq. (3)

means that an edge pixel hypothesispi
0

is considered as a
real edge pixel if there is no other neighboring edge pixel
hypothesis whose contrast iscth greater than that ofpi

0
.

Fig. 2 is a comparison between the proposed Soft-NMS
method and the traditional NMS method on a coarse edge.
We can see that the edge pixels detected by the traditional
NMS method tend to breaks into fragments while the Soft-
NMS can keep the completeness of the edge chain well. In
fact, it is difficult to detect a single pixel width edge chain
on a coarse edge, because the neighboring pixels near the
real position of the edge share very close intensity informa-
tions. With the influence of noise and quantization error,
it is not stable to obtain sequential single pixel width edges
via the traditional NMS method on a coarse edge. However,
by setting a contrast thresholdcth, the proposed Soft-NMS
method can achieve the goal of suppressing the non-edge
pixels as well as keeping the completeness of the edges.

The soft non-maximum suppression procedure is applied
on each leveln,n > 0, while for the original (level 0) image
there is no need to apply the Soft-NMS, so all the pixels of
the edge chains on the level 0 are kept. Thus, for each level,
an edge map, which is in the same size asI0, with each edge
pixel labeled with the ID of the corresponding edge chain is
obtained, the set of these edge maps is denoted asE .

2.2.3 Edge Chain Merging

Fusing the edge detection result on multi scales to form
a single edge map is a tough task, both the spatial accu-
racy and the completeness of the edges should be taken into
consideration. Tracking across scales is a widely applied
method, and usually the tracking is started from the edge
pixels on the coarse scales to determine their precise loca-
tions over decreasing scales [18, 6]. However, the edge pix-
els based tracking procedure suffers from the influence of
noise especially on the fine scales, for example, the track-
ing procedure may terminate in the local area due to noises.
To solve this problem, more constraints on tracking are at-
tached, which however makes the tracking procedure very
complicated.

In contrast to those edge pixel based tracking methods,
we propose a merging method which is based on the edge
chains detected in different scales. We consider the multi-
scale edge merging problem as a procedure of making up
the edge map at level 0 with the edge chains on higher lev-
els. Considering the fact that there are generally two types
of making up categories: 1)cover the clutter area where
exists multiple edge chain detections (type 1 in Fig.3 (a));

2) fill the gap between two consecutive edge chains (type 2
in Fig. 3 (a)), the proposed edge chain merging method is
conducted as follows.

Firstly, a single edge mapEmergedis created. All the edge
chain pixels onE0 are kept unchanged inEmerged, which
meansEmerged= E0, initially.

Then, for each leveln, n > 0, the corresponding edge
chain set and the edge map on this level are denoted asCn
andEn, respectively. For each edge chainC ∈ Cn, we
traverse each pixel inC sequentially from the beginning to
the end to find the type of each pixel. For a pixelpn onC,
the set of the corresponding pixels ofpn on the edge map
En is denoted asP . Then we search the pixels inP on the
edge mapEmerged, and calculate the number of edge chains
num by the ID values of edge chains recorded inEmerged.
The type ofpn can then be categorized into:

• type 0: if num = 1, which means there exists only
one low level edge chain overlapped withC, thus the
low level edge chain is kept for precision.

• type 1: if num ≥ 2, which means there exist more
than one low level edge chains overlapped withC,
and there are chaos detections inP , thus these pixels
should becoveredwith the current edge chainC.

• type 2: if num = 0, which means there exist no low
level edge chain inP , thus these pixels should befilled
with the current edge chainC.

With the categories of each pixel onC, the intervals of
these pixels that belong to type 1 or type 2 are founded,
these intervals are extended one pixel on each terminal for
better connection with the edge chains already recorded
in Emerged. For example, if there is an edge chain whose
category list is{0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 0, 1, 1, 2, 2, 0, 0},
then three intervals [2,5], [7,10] and [12,17] will be discov-
ered. For each interval, the corresponding edge pixels on
En are found, then those pixels are recorded into the merged
edge mapEmergedwith a new unique value of ID.

Fig. 3 illustrates the edge chain merging procedure on
the level 0 and level 1. Fig.3(a) shows the edge chains
detected on the level 0, from which we can see that there
exist many blank gaps on the coarse edges, while these gaps
and the miss detections are well discovered on the level 1 as
shown in Fig.3(b), where the pixels in green stand for the
ones made up from the edge chains on the level 1. Fig.3(c)
is a close look of the “type 1” rectangular area marked in
Figs.3(a) and (b), in which two edge chains (distinguished
in red and blue) are considered to be chaos detections and
thus covered by the green pixels from the level 1.

2.2.4 Edge Chain Thinning

The final output of the proposed MSEdge detector is a set
of single pixel width edge chain detection. The result of the
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(a) Image (b) Soft-NMS (c) NMS (d) NMS Detail (e) NMS Detail
Figure 2. Comparison between the proposed Soft-NMS method and the traditional NMS method. The last two figures (d) and (e) are the
details of the rectangular areas in figure (c).

(a) level 0 (b) level 0 + 1 (c) details of type 1
Figure 3. An illustration of the edge chain merging procedure on the level 0 and the level 1 of the Lena image.

edge chain merging is a single edge mapEmerged, as shown
in Fig.4(b), to obtain single pixel width edge chains from an
edge map, tracking is the most widely used method [19, 25].
However, the 8-neighbors tracking [19] is not suitable for
the edge pixel tracking on the multi-pixel width edge map
Emerged, while the Edge Drawing [25] also suffers from the
problem of anchor points choosing which is also a tough
issue on the coarse edges.

The edge map obtained by the edge chain merging from
low levels to high levels preserves all the single pixel width
edge chains, which will keep unchanged by applying a mor-
phological dilation procedure. As to these pixels on the
multi-pixel width edge, it is unnecessary to find out the
strongest ones in them because the neighboring pixels near
an edge pixel share very close edge responses, thus a mor-
phological dilation procedure is also suitable for these pix-
els. Thus in this work a morphological dilation method
named Guo-Hall thinning [13] is applied, which takes the
3 × 3 neighboring region of each pixel into consideration.
Firstly, the north and east and then the south and west
boundary pixels are alternatively deleted for locating the
middle of the edge region as the edge chain pixel. Then,
a thinning operator to one of two subfields is alternatively
applied. The Guo-Hall thinning algorithm is iteratively per-

formed until there is no more pixels dilated. In our work
the iteration is around2N whereN is the highest level pre-
defined because there is little edge chain whose width is
greater than2N . Generally,N = 3, the iteration is 8. In our
work, only the edge pixels are examined at each iteration,
which makes the edge chain thinning procedure very fast.
The result of the Guo-Hall thinning is a single pixel width
edge map, which is denoted asEsingle.

After applying Guo-Hall thinning, a single edge map
Esingle is obtained, as Fig.4(c) shows, and then the sin-
gle pixel width edge chains can be detected fromEsingle by
applying the same tracking procedure as that introduced in
Section2.1.1. Fig. 4 (d) shows the original edge chains de-
tected on the Lena image, we can observe in the rectangular
areas that most detected edge chains are complete, but there
still exits few fragment detections.

For further refinement of the detected edge chains, a sim-
ple edge chain connecting procedure is applied to get more
complete edge chains, which is conducted as follows: for
each edge chainCi, the 8-neighbors of the foremost 10 pix-
els on each terminal ofCi is searched, if there is a edge
pixel p that belongs to another edge chainCj is searched,
andp is also one of the foremost 10 pixels on one terminal
of Cj , we considerCi andCj to be two connected edge
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(a) Lena image (b)Emerged (c)Esingle

(d) Original edge chains (e) Edge chains after connection
Figure 4. An illustration of the edge chain thinning procedure applied on the Lena image.

chains and then merged them to form a new edge chain.
Fig. 4 (e) shows the edge chains after the connection pro-
cedure, we can see that most of the fragmentary detections
are connected quite well.

3. Experimental Results

To evaluate the performance of the proposed MSEdge,
we tested it on both the ROC dataset1 [8] and the BSDS
dataset2 [20]. The ROC dataset is made up of 60 images
with ground truth edge chains, while the BSDS dataset con-
sists of 300 images with labeled object boundaries. We use
the ROC dataset and BSDS dataset to evaluate the perfor-

1Available athttp://figment.csee.usf.edu/edge/roc/
2Available athttps://www.eecs.berkeley.edu/Research/Projects/CS/v ision/bsds/

mance of the proposed MSEdge as an edge chain detector
and a boundary detector, respectively. The used measure-
ments are FP, TP,F -score, the precision (P) and recall ratio
(R) for the ROC dataset, andF -score,P andR for the BSDS
dataset. Let DC be the set of edge pixels detected by a cer-
tain method, GT denotes that of the ground truth data, the
precision (P) and recall ratio (R) are defined as follows:

P =
#{DC∩ GT}

#{GT}
and R =

#{DC∩ GT}
#{DC}

. (4)

TheF -score is defined asF = 2PR/(P +R).

3.1. Discussion on Parameters

There are two families of parameters to be set in the pro-
posed method: (1)(glow, ghigh) for the Canny edge detec-
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tion andgth for edge chain validation; (2)cth for soft non-
maximum suppression.

Tuning the two thresholds of Canny has been studied for
many years [14], in this work we do not mean to go into
this tough issue, because the edge chains detected in mul-
tiple scales are finally merged, so on each level, a Canny
operator with(glow, ghigh) = (30.0, 60.0) will be suitable
enough to capture the salient edge chains for general ap-
plications. For specific cases, we also recommend to set
ghigh = 2.0×glow, and adjust the value ofglow to get the best
performance. The tunning of(glow, ghigh) leads to abrupt
change of the edge detection result, while the adjusting of
gth for edge chain validation gives finer adjustment of the fi-
nal result. Table1 shows the average detection results on the
ROC dataset with(glow, ghigh) = (30.0, 60.0) andgth vary-
ing from 20 to 120, whereLavg denotes the average length
of all the edge chains. From Table1, we can see that the
TP,F -score andP are improved gradually with the increas-
ing of gth, while the recall ratioR is decreased on the con-
trary, which means that a high value ofgth leads to less but
more meaningful detections. We can also see in Table1 that
gth = 60 gives a good balance between precision and recall
ratio. As a conclusion, for general cases, we recommend to
set(glow, ghigh, gth) = (30.0, 60.0, 60.0).

The parametercth affects the width of the edge pixel area
on the edge maps, andcth = 0 means that only the local
maximum pixel will be kept as an edge pixel, which co-
incides well with the definition of the traditional NMS. Ta-
ble2 shows the average detection results on the ROC dataset
with (glow, ghigh, gth) = (30.0, 60.0, 60.0) and cth varying
from 0 to 11. From Table2, we can see thatcth = 0 leads
to a higher detection precision andF -score but a smaller
value on the average edge chain lengthLavg, which means
that the Soft-NMS method can produce more complete de-
tection results than the NMS method. We can also see in
Table2 that whencth ≥ 5, the increment ofcth gives little
influence on the detection result, which means thatcth = 5
is good enough to make the edge pixels connected on the
coarse edge, thus we recommend to setcth = 5 for all the
cases.

3.2. Comparison with State-of-the-Art Methods

To sufficiently evaluate the performance of our pro-
posed MSEdge algorithm, we compared it with other
five state-of-the-art edge detection methods, including:
ED [25], EDPF [3], SREdge [28], a multi-scale edge de-
tector SMED [5] and a boundary detector PS [21]. The
source codes of ED and EDPF can be obtained from the
Edge Drawing library [1], the source code of SREdge was
implemented by us according to the original paper, and the
source code of SMED is publicly available3, that of the PS

3Available athttp://www4.comp.polyu.edu.hk/ ˜ cslzhang/code/ed.rar

is available at the BSDS dataset4.

3.2.1 Comparison On Benchmarks

We tested six algorithms on both the ROC dataset and the
BSDS one. The ROC dataset can be used to evaluate the
performance of the tested algorithms as an edge detector,
while the BSDS dataset can be used to assess the quality
of an algorithm on boundary detection. The parameters of
the proposed MSEdge on the ROC dataset were set as those
recommended in Section3.1, while on the BSDS dataset,
we setgth = 160 to filter out the weak edges and keep the
strong boundaries. The code of SMED requires square im-
ages as input, thus for each input image, we resized it into
500× 500 for the ROC dataset and400× 400 for the BSDS
dataset, and then applied the SMED method to obtain an
edge map, the edge map was then resized back into the size
of the original image, and the statistical measures were cal-
culated on this resized edge map. Table3 shows the av-
erage detection results of the six tested algorithms on both
the ROC dataset and BSDS one. From Table3, we can see
that the SREdge method performs best on the ROC dataset
with aF -score of 0.750, which is close to that of the SMED
in the second place. The proposed MSEdge achieves aF -
score of 0.726 which is close to the EDPF (0.726) and better
than the ED (0.705) and the boundary detector PB (0.718).
The reason is that the ground truth of the ROC dataset are
salient edges, most of the coarse edges are not labeled out
as ground truth, thus the edge detectors like SREdge, ED,
EDPF works well in it. As to the BSDS dataset, we can
observe that the boundary detector PB performs much bet-
ter than other methods, and the proposed MSEdge ranks
in the second place with EDPF. TheF -scores of SREdge,
SMED and ED are smaller than other methods due to their
low precisions, which means that much false edges are de-
tected by these methods on the natural images of the BSDS
dataset. Fig.5 shows the detection results of the six tested
algorithms on two images of the ROC dataset and the BSDS
dataset in vision, similar conclusion to that from Table3 can
be drawn from Fig.5. Besides this we can also find that the
proposed MSEdge can detect the coarse edges (marked in
rectangles) much better than the other methods like EDPF
and SMED. As a conclusion, in both datasets, the proposed
MSEdge achieve moderate performances, which show the
quality of the MSEdge method as both an edge chain detec-
tor and a boundary detector.

3.2.2 Comparison On Common Images

Besides the ROC dataset and the BSDS dataset, which can
not represent the multi-scale characters of the images very
well, we also tested the six algorithms on the Lena image

4Available athttps://www.eecs.berkeley.edu/Research/Projects/CS/v
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Table 1. Comparison of the MSEdge detection results on the ROCdataset withgth varying from 20 to 120.gth = 60 is recommended for
general cases.

gth FP TP F -score P R Lavg

20 0.035 0.552 0.683 0.552 0.945 59.914

40 0.026 0.576 0.701 0.576 0.941 61.442

60 0.017 0.611 0.725 0.611 0.931 63.134

80 0.015 0.638 0.739 0.638 0.915 64.693

100 0.012 0.662 0.750 0.662 0.897 66.129

120 0.011 0.685 0.757 0.685 0.878 67.478

Table 2. Comparison of the MSEdge detection results on the ROCdataset withcth varying from 0 to 11.cth = 5 is recommended for
general cases.

cth FP TP F -score P R Lavg

0 0.015 0.626 0.736 0.626 0.928 58.234

3 0.017 0.612 0.726 0.612 0.931 61.563

5 0.017 0.611 0.726 0.611 0.932 63.126

7 0.017 0.611 0.725 0.611 0.931 64.222

9 0.017 0.611 0.725 0.611 0.931 64.924

11 0.017 0.611 0.725 0.611 0.930 65.541

Table 3. Comparison of the six tested algorithms in the ROC dataset and BSDS dataset.

Dataset ROC BSDS

Algorithms FP TP F -score P R F -score P R

MSEdge 0.017 0.611 0.726 0.611 0.932 0.550 0.480 0.640

ED [25] 0.020 0.576 0.705 0.576 0.967 0.520 0.430 0.670

EDPF [3] 0.016 0.600 0.726 0.600 0.954 0.570 0.480 0.690

SREdge [28] 0.015 0.625 0.750 0.635 0.955 0.530 0.420 0.700

SMED [5] 0.004 0.693 0.746 0.693 0.884 0.510 0.440 0.620

PB [21] 0.007 0.721 0.718 0.721 0.755 0.610 0.590 0.630

and two out-of-focus images. Considering the fact that the
ED, EDPF and SREdge methods belong to the traditional
single scale edge detector category, and both the SMED and
PB are the multi-scale ones, thus in Fig.6 only the EDPF
and PB methods are compared with the proposed MSEdge
method for simplification. We can see in Fig.6 that un-
like in the BSDS and ROC datasets, in this test the pro-
posed MSEdge performs much better than other methods,
with both the coarse edges and the details persevered quite
well. The detection result of PB contains little fragments,
but many edges are ignored by it because the PB determines
the existence of edge pixel based on the informations in a
neighbouring area of each pixel, thus it may be not suitable
for the PB to be applied on the images with very coarse
edges. The EDPF can also detects out most of the edges but
there exist many fragments, also some faint edges are dis-
missed by EDPF. As a result, we can draw the conclusion
that, as a simple edge chain detector, the proposed MSEdge

can detect both the fine and coarse edges, and its perfor-
mance is much better than other edge chain detectors, espe-
cially on the large size images.

3.3. Application on Line Segment Detection

Differing to the SMED and PB method which take an
edge map as the final result, the output of the proposed
MSEdge method is a set of single pixel width edge chains
with consecutive pixels, which can be directly applied on
the detection of line segments. To extract line segments
from the edge chains, the same strategy as that used in
the work of EDLines [2] is applied, which is conducted
as follows. For each edge chain, we traverse the pixels
in sequence, and fit line segments to the pixels via the
Least Square Fitting method, once the perpendicular dis-
tance from the pixel to the current line segment exceeds a
certain threshold, 1 pixel as we set, we generate a new line
segment and continue this procedure until all the pixels on
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Images

MSEdge

ED [25]

EDPF [3]

SREdge [28]

SMED [5]

PB [21]
Figure 5. Edge detection results of the six tested algorithmson two images of the ROC dataset (the first and second columns) and the
BSDS dataset (the third and fourth columns), respectively.

this edge chain are walked over. We denoted this line seg-
ment detector as MSLine, and Fig.7 shows the comparison
between the LSD [27] and the MSLine on three large size
images. From the first column to the last one is the original
image, the edge chains detected by the proposed MSEdge
and its time consumption, the line segments detected by
the MSLine and the LSD, respectively. We can see that

the LSD detector fails on the coarse and blurred lines and a
lot of fragmentary line segments exist, see the branches of
the tree on the first row and the clouds on the second row.
While the MSLine can recover almost all the line segments
of the scene in all these three images, also the line segments
extracted by MSLine are much longer and completer than
those detected by the LSD. The time consumption of the
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Image(512× 512) MSEdge EDPF PB

Image(1024× 682) MSEdge EDPF PB

Image(1237× 878) MSEdge EDPF PB
Figure 6. Edge detection results of the three tested algorithms on two out of focus images.

MSEdge on these large size images are around 1.6s on a
computer with Intel Core i5-3550p CPU without any opti-
mization, which means that there is a high potential for the
MSEdge and MSLine to be applied on the real time tasks.

4. Conclusion

This paper presents a novel multi-scale edge chain detec-
tor (MSEdge) which can robustly extract edge chains from
images at different scales, especially on the large size im-
ages. The proposed MSEdge is based on the edge chains
detected and validated in different scales, which leads to a
robuster and more complete edge detection result than the
traditional edge pixel based ones. Experiments and com-
parison with other five edge/boundary detectors on the ROC
dataset, the BSDS dataset and several common images suf-
ficiently demonstrate the efficiency and robustness of the
proposed MSEdge as a multi-scale edge chain detector.
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