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ABSTRACT:

In this paper, we first present a novel hierarchical clustering algorithm named Pairwise Linkage (P-Linkage), which can be used for
clustering any dimensional data, and then effectively apply it on 3D unstructured point cloud segmentation. The P-Linkage clustering
algorithm first calculates a feature value for each data point, for example, the density for 2D data points and the flatness for 3D point
clouds. Then for each data point a pairwise linkage is created between itself and its closest neighboring point with a greater feature
value than its own. The initial clusters can further be discovered by searching along the linkages in a simple way. After that, a cluster
merging procedure is applied to obtain the finally refined clustering result, which can be designed for specialized applications. Based on
the P-Linkage clustering, we develop an efficient segmentation algorithm for 3D unstructured point clouds, in which the flatness of the
estimated surface of a 3D point is used as its feature value. For each initial cluster a slice is created, then a novel and robust slice merging
method is proposed to get the final segmentation result. The proposed P-Linkage clustering and 3D point cloud segmentation algorithms
require only one input parameter in advance. Experimental results on different dimensional synthetic data from 2D to 4D sufficiently
demonstrate the efficiency and robustness of the proposed P-Linkage clustering algorithm and a large amount of experimental results
on the Vehicle-Mounted, Aerial and Stationary Laser Scanner point clouds illustrate the robustness and efficiency of our proposed 3D
point cloud segmentation algorithm.

1. INTRODUCTION

Segmentation is one of the most important pre-processing step
for automatic processing of point clouds. It is a process of classi-
fying and labeling data points into a number of separate groups or
regions, each corresponding to the specific shape of a surface of
an object. The cluster analysis which classifies elements into cat-
egories according to their similarities has been applied in many
kinds of fields, such as data mining, astronomy, pattern recog-
nition, and can also be applied on the segmentation of 3D point
clouds.

1.1 Point Cloud Segmentation

Segmentation in 3D point clouds obtained from laser scanners is
not trivial, because the three dimensional point data are usually
incomplete, sparsely distributed, and unorganized, also there is
no prior knowledge about the statistical distribution of the points,
and the densities of points vary with the point distribution. Many
methods have been developed to improve the quality of segmen-
tation in 3D point clouds that can be classified into three main
categories: edge/border based, region growing based and hybrid.

The edge/border based methods attempt to detect discontinuities
in the surfaces that form the closed boundaries, and then points
are grouped within the identified boundaries and connected edges.
These methods usually apply on the depth map where the edges
are defined as the points where the changes of the local surface
properties exceed a given threshold. The local surface properties
mostly used are surface normals, gradients, principal curvatures,
or higher order derivatives (Sappa and Devy, 2001, Wani and
Arabnia, 2003). However, due to noise caused by laser scanner-
s themselves or spatially uneven point distributions in 3D space,

∗Corresponding author

such methods often detect disconnected edges which makes it d-
ifficult for them to identify closed segments (Castillo et al., 2013)
without a filling or interpretation procedure.

The region growing based approaches deal with segmentation by
detecting continuous surfaces that have homogeneity geometrical
properties. In the segmentation of unstructured 3D point clouds,
these methods firstly choose a seed point from which to grow a
region, and then local neighbors of the seed point are combined
with it if they have similarities in terms of surface point proper-
ties such as orientation and curvature (Rabbani et al., 2006, Ja-
gannathan and Miller, 2007). There are also algorithms which
take a sub window (Xiao et al., 2013) or a line segment (Harati
et al., 2007) as the growth unit. (Woo et al., 2002) proposed
an octree-based 3D-grid method to handle large amount of un-
structured point clouds. The smoothly connected regions are the
key points of the region growing based methods. Surface normal
and curvatures constraints were widely used to find the smoothly
connected areas (Klasing et al., 2009, Belton and Lichti, 2006).
In general, the region growing based methods are more robust
to noise than the edge-based ones because of the using of glob-
al information (Liu and Xiong, 2008). However, these methods
are sensitive to the location of initial seed regions and inaccurate
estimations of the normals and curvatures of points near region
boundaries can cause inaccurate segmentation results, and also
outliers can result in over- and under-segmentation.

The hybrid approaches use both edge/border-based and region-
growing-based methods to overcome limitations in the respec-
tive approaches (Vieira and Shimada, 2005, Lavoué et al., 2005).
(Benkő and Várady, 2004) proposed a hybrid approach for the
segmentation of engineering objects, which detects sharp edges
and small blends using an edge-based approach in the first step
and then finds smooth regions after filtering out sharp edges and
small blends. However, the success of these hybrid methods de-



pends on the success of either or both of the underlying methods.

1.2 Clustering

The cluster analysis, which aims at classifying elements into cat-
egories on the basis of their similarities, has been applied in many
kinds of fields, such as data mining, astronomy, and pattern recog-
nition. In the last several decades, thousands of algorithms have
been proposed to try to find a better solution for this problem
in a simple but philosophical way. In general, these algorithms
can be divided into two categories: partitioning and hierarchical
methods. The partitioning clustering algorithms usually classify
each data point to different clusters via a certain similarity mea-
surement. The traditional algorithms K-Means (MacQueen et al.,
1967) and CLARANS (Ng and Han, 1994) belong to this cate-
gory. The hierarchical methods usually create a hierarchical de-
composition of a dataset by iteratively splitting the dataset into
smaller subsets until each subset consists of only one object, for
example, the single-linkage (SLink) method and its variants (Sib-
son, 1973).

1.3 Clustering in Point Cloud Segmentation

The clustering algorithms which classify elements into categories
on the basis of their similarities can also be applied on the seg-
mentation of 3D point clouds. The widely used K-Means algo-
rithm (MacQueen et al., 1967), which can divide the data points
intoK (a predefined parameter that gives the number of clusters),
was applied in (Lavoué et al., 2005) to classify the point cloud-
s into 5 clusters according to their curvatures. The shortcom-
ing of the K-Means clustering algorithm is that it needs to know
the number of clusters beforehand, which can’t be predefined in
many cases. To overcome this shortcoming, the mean shift algo-
rithm (Comaniciu and Meer, 2002), which is a general nonpara-
metric technique to cluster scattered data, was employed on the
point cloud segmentation (Yamauchi et al., 2005b, Yamauchi et
al., 2005a, Zhang et al., 2008). In the works of (Yamauchi et
al., 2005b, Yamauchi et al., 2005a), the mean shift algorithm was
employed to integrate the mesh normals and the Gaussian curva-
tures, respectively. In the work of (Liu and Xiong, 2008), the
normal orientation was converted into the Gaussian Sphere, and
a novel cell mean shift algorithm was proposed to identify planar,
parabolic, hyperbolic or elliptic surfaces in a parameter-free way.
However, most of the point cloud segmentation methods based on
clustering can only discover small amount segmentations, which
can be employed on some industry applications but may fail on
the vehicle-mounted and aerial laser scanner point clouds which
contains thousands of surfaces in large indoor/outdoor scenes.

1.4 Objectives and Motivation

In this paper, we aim to develop a simple, efficient point cloud
segmentation algorithm which can be applied on a large amoun-
t of unstructured Vehicle-Mounted, Aerial and Stationary Laser
Scanner point clouds by employing the clustering algorithm on
point cloud segmentation. To achieve this goal, we introduce two
algorithms:

P-Linkage Clustering: Based on the assumption that: a data
point should be in the same cluster with its closest neighbor-
ing point (CNP) which is more likely to be a cluster center, we
propose a novel hierarchical clustering method named Pairwise
Linkage (P-Linkage) which can discover the clusters in a simple
and efficient way. Firstly, a pairwise linkage procedure is applied
to link each data point to its CNP on the data-point level. Then the
initial clusters can be discovered by searching along the pairwise
linkages starting from the points with local-maximal densities.
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Figure 1: An illustration of the pairwise linkage on a 2D Gaus-
sian curve. Derived from the non-maximum suppression, the P-
Linkage compares each data point to its neighbors and forms the
linkages fromp1 → p2 → p3...→ c.
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Figure 2: An illustration of the hierarchical clustering procedure.
The data pointsp1 andp34 are the cluster centers, the symbol→
indicates the pairwise linkage, and the big circle in green denotes
the neighborhood set of a data point with a cutoff distancedc.

The proposed clustering method is not iterative and needs only
one step for general cases, and also a cluster merging method is
proposed for specific cases.

Point Cloud Segmentation: Based on the proposed P-Linkage
clustering, we develop a simple and efficient point cloud segmen-
tation algorithm which needs only one parameter and can be ap-
plied on a large amount of unstructured Vehicle-Mounted, Aerial
and Stationary Laser Scanner point clouds. The P-Linkage clus-
tering in point cloud segmentation takes the flatness of the esti-
mated surface of a 3D point as its feature value and forms the
initial clusters via point data collection along the linkages. For
each initial cluster we create a slice. All the slices are merged
in a simple or efficiently strategy to get the final segmentation
result. The proposed point cloud segmentation algorithm needs
only one parameter to balance the segmentation results of planar
and surface structures.

The remainder of this paper is organized as follows. The pro-
posed P-Linkage clustering algorithm is detailedly described in
Section 2. The point cloud segmentation algorithm by employ-
ing the P-Linkage clustering on 3D unstructured point clouds is
introduced in Section 3. Experimental results on different kinds
of synthetic and real data are presented in Section 4 followed by
the conclusions drawn in Section 5.

2. PAIRWISE LINKAGE

The key conception of the P-Linkage clustering method is that: a
data pointpi should be in the same cluster with its closest neigh-
borpj that is more likely to be a cluster center, and this relation-
ship betweenpi andpj is called a pairwise linkage. This con-
ception is derived from the idea of non-maximum suppression



(NMS) (Canny, 1986, Neubeck and Van Gool, 2006), in which
one data point is only needed to compare with its neighbors and
will be suppressed if it is not local-maximal. Figure 1 shows an
illustration of the NMS, from which we can see thatp1 is sup-
pressed byp2 and the same suppression occurs onp2 when it
is compared top3, which result in a linkp1 → p2 → p3. In
this way, all the data points on the curve are finally linked to the
cluster centerc ,which is the local-maximal one, just via compar-
ing to their neighboring points. In fact, the P-Linkage clustering
makes up the gap between the local to the global information of
the data points, which makes it more robust than the local-based
clustering methods and more efficient than the global-based ones.
In the following subsections, we will introduce the pairwise link-
age algorithm on the clustering of 2D data points, which takes the
density of a data point as its feature value to build linkages.

Cutoff Distance: The cutoff distancedc, as shown in Figure 2,
is a global parameter to demarcate the neighborhood set of a data
pointpi from other data points. In the recent work of (Rodriguez
and Laio, 2014), the value ofdc was set as the value at the1%−
2%-th of all the distances between any two data points, denoted
as the setD, which were sorted in ascent order. However it is
not appropriate to set the cutoff distancedc in this way because
dc is an indicator of the distribution of the neighboring points,
and it should be derived from the local neighborhood instead of
D. Thus, we propose a simple method to determine the value of
dc, which is described as follows. For each data pointpi, the
distance betweenpi and its closest neighbor is recorded inDcn,
and thendc is computed as:

dc = scale×median(Dcn), (1)

wherescale is a customized parameter which means the cutoff
distancedc is scale times the value of the median value of the
setDcn. In this way,dc represents much more neighborhood dis-
tribution information than setting it1% − 2%-th ofD. Only the
data points whose distances topi are smaller thandc are consid-
ered as the neighborhood set ofpi, which is denoted asIi, as the
green circle shown in Figure 2.

Density: (Rodriguez and Laio, 2014) defined the density of a data
point pi as the number of data points of its neighbors, which is
discrete-value and thus is not suitable for our application requir-
ing continuous values for densities. In our proposed method, the
densityρi of a data pointpi is calculated by applying a Gaussian
Kernel on all the data points as follows:

ρi =
∑

j∈[1,N],j 6=i
exp

(

− (dij/dc)
2
)

, (2)

whereN denotes the number of all the data points anddij is the
distance between two pointspi andpj .

Pairwise Linkage: With the densities of all the data points, the
pairwise linkage can be recovered in a non-iterative way, which
is performed as follows. For a data pointpi whose neighborhood
set isIi, we traverse each point inIi and find the closest data
point pj whose density is greater than that ofpi, and then we
consider the data pointpi should be in the same cluster aspj

and record the linkage between the data pointspi andpj . If
the density ofpi is local-maximal, which means that there exists
no data point inIi whose density is greater than that ofpi, we
considerpi as a cluster center. The result of the pairwise linkage
procedure is comprised of a lookup tableT recording the linkage
relationship and a setCcenter recording all the cluster centers.

Hierarchical Clustering: The hierarchical clustering is a top-
down procedure, which is similar to that of the divisive clus-
tering algorithm. For each cluster centerci in Ccenter, we start

searching the lookup tableT from ci in a depth-first or breadth-
first way to gather all the data points that are directly or indi-
rectly connected withci, which generates a cluster whose cen-
ter isci. The whole hierarchical clustering finds the final clus-
tersC. Figure 2 shows an illustration of the hierarchical clus-
tering procedure. From Figure 2, we can observe thatp1 is
the cluster center due to its local maximal density and there are
four pairwise linkages between(p1,p13), (p13,p4), (p4,p27),
and(p27,p8). Thus the hierarchical clustering is performed as
p1 → p13 → p4 → p27 → p8. By this way, the clustering in-
formation is propagated from the dense data points to the sparse
ones, which is similar to the heat propagation.

Cluster Merging: When the data points are Gaussian-distributed,
as shown in Figure 1, the hierarchical clustering via pairwise link-
age can find the global cluster centers and recover the cluster-
s quite well, but may fail in fragmented clustering results when
there exist one or multiple local maximum(s). To deal with all the
conditions of data point distribution, a customized cluster merg-
ing strategy is proposed with the following three steps. Firstly,
for each clusterCp, the average densityµp and the standard de-
viation σp of all the data points inCp are calculated. Secondly,
the adjacent clusters for each clusterCp are collected by search-
ing for the border data points between adjacent clusters. For each
data pointpi in Cp, its neighborhood set is denoted asIi. If a
data pointpj in Ii belongs to another clusterCq, these two clus-
ters are considered to be a pair of adjacent clusters,pi andpj are
recorded as the adjacent points betweenCp andCq, respectively.
Thirdly, for each adjacent cluster pairCp andCq, the average den-
sities of the adjacent points ofCp andCq are denoted asρp and
ρq, respectively. These two adjacent clusters will be merged if
the following conditions are met:

ρp > µq − σq and ρq > µp − σp. (3)

The cluster merging is conducted iteratively, which means that
all the clusters that are directly or indirectly adjacent to the start
cluster are merged.

Outliers: In the previous work presented by (Ester et al., 1996),
the outlier points are the ones whose densities are smaller than a
certain threshold. By this way, the low density data points may
be classified as outliers. In the work of (Rodriguez and Laio,
2014) the outlier points are considered as those whose densities
are small than the highest density in the border region of a cluster,
which means that all the data points in the border region of a
cluster are discarded as outliers. In our work, we consider the
outliers on the cluster-level. If a data pointpi whose density is
local-maximal but smaller than the median density, median(ρ),
of all the data points, all the data points in the same cluster with
pi are considered as outliers.

Figure 2 shows an illustration of some basic ideas of the proposed
P-Linkage method, from which we can observe that there are t-
wo clusters in blue and red, respectively. For each data point, the
pairwise linkage is formed by searching for the closest neighbor-
ing point whose density is greater than its own. For example,p8

is first linked top27,p27 is then linked top4, p4 is further linked
to p13, andp13 is finally linked top1 with the greatest density
in its neighborhood. In this way, the complete linkage is found
asp8 → p27 → p4 → p13 → p1, and thus all of these five
data points are classified into the same cluster whose cluster cen-
ter isp1. The same procedure occurs for all the data points in
blue as a separate cluster. Similarly the red cluster can be formed
by this way. As to the data points on the boundary between two
clusters, the pairwise linkage can still be applied. Taking the data
pointp33 for example,p19, p7, p6, andp28 are its neighboring
points,p6 is its closest neighboring point (CNP), and thusp33



is classified into the blue cluster, which is quite reasonable. The
four data points in black,p26, p18, p17, andp16, are classified
as outliers because there exist no CNP in their neighborhood, and
the densities of their cluster centers are not high enough neither.

As a summary, the proposed clustering method can discover the
clusters and cluster centers in only one step in general cases with-
out the merging procedure. For each data pointpi with a density
ρi, we find its closest neighboring pointCNP (pi) whose den-
sity is greater than that ofpi, and classify the pointpi to the
same cluster asCNP (pi). If the densityρi of the data point
pi is local-maximal and greater than the average densityρ, we
considerpi as a cluster center. Algorithm 1 describes the com-
plete procedure in details of the proposed P-Linkage clustering
method.

Algorithm 1 Hierarchical Clustering by Pairwise Linkage
Require: The density of each data point; the cutoff distancedc.
Ensure: The clustersC; their cluster centersCcenter.

1: ρi : the density of a data pointpi

2: ρ : the average density of all the data points
3: Ii : the neighborhood set of a data pointpi

4: T : the lookup table recording all the pairwise linkages
5: for each data pointpi do
6: SetLocalMaximal← TRUE
7: Setdmin ←∞ andCNP (pi)← ∅
8: for each neighboring pointpj in Ii do
9: Setdij ← the distance betweenpi andpj

10: if ρj > ρi anddij < dmin then
11: SetLocalMaximal← FALSE
12: SetCNP (pi)← pj , dmin ← dij
13: end if
14: end for
15: if NOT LocalMaximal then
16: Record the linkage betweenpi andCNP (pi) intoT

17: else if LocalMaximalandρi > median(ρ) then
18: Insert the data pointpi into Ccenter

19: end if
20: end for
21: Collect the clustersC by searching data points in the lookup

tableT from each data point inCcenter

3. P-LINKAGE FOR POINT CLOUD SEGMENTATION

The segmentation of point clouds can also be formulated as a
clustering problem because the data points on a small surface of-
ten share the similar normal value. Thus we can employ the pro-
posed P-Linkage clustering method on the segmentation of point
clouds, which differs from that on the 2D data points in three as-
pects: (1) the neighborhood is based on theK nearest neighbors
(KNN) instead of the fixed distance neighbors; (2) the feature
value is the flatness of the estimated surface instead of the den-
sity of neighbors; (3) the distance of two data point is measured
as the deviation of their normal orientations instead of their Eu-
clidean distance. In the following subsections we will explain the
P-Linkage based point cloud segmentation algorithm in details.

Normal Estimation: The normal for each point is estimated by
fitting a plane to some neighboring points. This neighborhood
can be specified in two different methods:K nearest neighbors
(KNN) based and Fixed distance neighbors (FDN) based. For
each data point, the KNN based methods select theK points
from the point clouds having the minimum distance to it as its
neighborhood, which is usually achieved by applying space par-
titioning strategies like the k-d tree (Arya et al., 1998). The FDN

based methods (Toth et al., 2004) select all the points within a
distance to each point, and thus the number of neighbors changes
according to the density of the point clouds. Compared to KNN,
the number of neighbors of FND is less in the areas of low densi-
ty area, which may result in inaccurate estimation of the normals.
In this paper, we employ the KNN method to find the neighbors
of each data point and estimate the normal of the neighboring sur-
face via the Principal Component Analysis (PCA). The procedure
contains three following steps. Firstly, we build a k-d tree by ap-
plying the ANN library (Mount and Arya, 2010). For each data
pointpi, itsK nearest neighbors (KNN) is found and recorded as
Ii which is sorted in ascending order according to their distances
to pi. Secondly, for each data pointpi, the covariance matrix is
formed by the firstK/2 data points in its KNN setIi as follows:

Σ =
1

K/2

∑K/2

i=1
(pi − p)(pi − p)T , (4)

whereΣ denotes the3×3 covariance matrix andp represents the
mean vector of the firstK/2 data points inIi. Then the standard
eigenvalue equation:

λV = ΣV (5)

can be solved using Singular Value Decomposition (SVD), where
V is the matrix of eigenvectors (Principal Components, PCs) and
λ is the matrix of eigenvalues. The eigenvectorsv2, v1, and
v0 in V are defined according to the corresponding eigenvalues
sorted in descending order, i.e.,λ2 > λ1 > λ0. The first two
PCsv2 andv1 form an orthogonal basis which indicate the two
dimensions of highest variability that defines the best fitted plane
of the neighboring points inIi, the third PCv0 is orthogonal to
the first two PCs, and approximates the normal of the fitted plane.
λ0 estimates how much the points deviate from the tangent plane
which can evaluate the quality of a plane fitting, and the smaller
the value ofλ0 the better the quality of the plane fitting.

For each data point, we first find itsK nearest neighbors and
calculate its eigenvectors via the firstK/2 neighbors via PCA,
and then take the eigenvectorv0 as the normal and the eigen-
valueλ0 as the flatness of the estimated plane. After that, the
Maximum Consistency with Minimum Distance (MCMD) algo-
rithm (Nurunnabi et al., 2015) is employed to find the inliers and
outliers, which is conducted as follows. First, the orthogonal dis-
tances{dko}

K
k=1 for theK nearest neighbors of a data pointpi

to its estimated plane are calculated, which are collected as a set
NOD = {dko}

K
k=1. Then, the Median Absolute Deviation (MAD)

is calculated as follows:

MAD = a×mediandk
o
∈NOD

|dko −median(NOD)|, (6)

where median(NOD) is the median value ofNOD anda = 1.4826
is set constant. The inliers, also known as the Consistent Set
(CS), are those data points whoseRz scores:

Rz =
|dko −median(NOD)|

MAD
(7)

are less than a constant threshold 2.5 (Nurunnabi et al., 2015).
Thus for each data pointpi, we obtain its normaln(pi), flatness
λ(pi) and Consistent SetCS(pi).

Linkage Building: With the normals, flatnesses andCSs of all
the data points, the pairwise linkage can be recovered in a non-
iterative way, which is performed as follows. For each data point
pi we search in itsCS to find out the neighbors whose flatnesses
are smaller than that ofpi and choose the one among them whose
normal has the minimum deviation to that ofpi asCNP (pi). If
there exitsCNP (pi), a pairwise linkage betweenCNP (pi) and
pi is created and recorded into a lookup tableT. If the flatness



λ(pi) of pi is the minimum one in its neighborhood andλ(pi)
is smaller than the following threshold:

thλ = λ+ σλ, (8)

whereλ is the average value of the flatnesses of all theN data

points,σλ =
√

∑N
i=1(λ(pi)− λ)2/N is standard deviation of

all the flatnesses, thus we takepi as a cluster center, and insert it
into the list of cluster centersCcenter.

Slice Creating: To create the surface slices, the clustersC are
firstly formed by searching along the lookup tableT from each
cluster center inCcenter to collect the data points that are direct-
ly or indirectly connected with it. The clusters whose numbers
of data points are smaller than 10 will be removed as outliers.
Then for each clusterCp a slice is created by plane fitting via the
MCS method proposed by (Nurunnabi et al., 2015), which is an
iterative procedure with the iteration number calculated as:

It =
log(1− P )

log(1− (1− ǫ)h0)
, (9)

whereh0 is the size of the minimal subset of the data points in
Cp which equals to 3 for plane fitting,P is the probability of the
event that there exists at least one case in all theIt iterations that
the random chosenh0 minimal subset is outlier free, andǫ is the
outlier rate inCp which was set50% for general cases. Then for
each iteration in the MCS method, the following steps are per-
formed: (1) First,h0 data points are chosen randomly. (2) For
theh0-subset, a plane is fitted via the PCA, and the orthogonal
distance for all the data points inCp are calculated and recorded
inNOD. (3) ThenNOD is sorted in ascending order and the firsth
(h equals to half the size ofCp) data points are chosen to form the
h-subset. (4) Finally, the PCA is applied again on theh-subset
to fit for a plane whose flatnessλ0 is added into the list of previ-
ous flatnesses, defined as the setS(λ0). After the iterations, the
S(λ0) is sorted in ascending order, and the plane corresponding
to the smallest flatness is chosen to be the best fitted plane ofCp.
Then the MCMD outlier removal method is applied to find out
the inliers, also known as the Consistent Set (CS), to the best
fitted plane inCp. Thus for each sliceSp, we obtain its normal
n(Sp), flatnessλ(Sp) and Consistent SetCS(Sp) in the same
way as each data point.

Slice Merging: To obtain complete planar and curved surfaces
which are quite common in the indoor and industry applications,
a normal and efficient slice merging method is proposed, which
is similar to the Cluster Merging procedure introduced in the P-
Linkage clustering and contains the following steps. First, we
search for the adjacent slices for each one, two slicesSp andSq

are considered adjacently if the following condition is satisfied:

∃ pi ∈ CS(Sp) and pj ∈ CS(Sq),

where pi ∈ CS(pj) and pj ∈ CS(pi).
(10)

Then, for a sliceSp and one of its adjacent sliceSq, they will be
merged if the following condition is satisfied:

arccos
∣

∣

∣
n(Sp)

⊤ · n(Sq)
∣

∣

∣
< θ, (11)

wheren(Sp) andn(Sq) are the normals ofSp andSq, respec-
tively, andθ is the threshold of the angle deviation. The greaterθ
is, the more curving the surface can be. The slice merging is con-
ducted iteratively, which means that all the slices that are directly
or indirectly adjacent to the start slice will be processed.

(a)scale = 5 (b) scale = 5

Figure 3: Clustering results of the proposed method on the Gaus-
sian distributed test data.

4. EXPERIMENTAL RESULTS

4.1 Evaluation on Clustering

The only customized parameter the P-Linkage requires is thescale
used to determine the value ofdc. We setscale = 5 for gener-
al cases, which will be proved in the following experiments to
be a good choice. The merging procedure, which is specifically
designed for the uniform distribution data, is not in use in gener-
al case but can be customized to get a better result if the initial
clustering result contains too much fragments.

To evaluate the proposed method on the Gaussian distribution da-
ta, we chose two test data in the “Shape sets”1, which contain 15
and 31 clusters, respectively. Figure 3 shows the clustering re-
sults on them, where the black points stand for the outliers, and
the points in other different colors belong to different clusters.
We can see that, in both data sets, all the clusters were correct-
ly discovered, and the outliers extracted by the proposed method
were all reasonable to be picked out. In both cases, the value of
scale was set as 5.

To further evaluate the proposed method on the uniformly distri-
bution data, the two other test data in the “Shape sets” were test-
ed. Figure 4 shows the clustering results of our method. In Fig-
ure 4(a) all the 7 clusters were discovered and distinguished well.
While in Figure 4(b), the left-down data points in purple were all
classified into a single cluster, the reason is that thescale = 5 is
too large for this case. By reducingscale = 2 and applying the
merging procedure, a better clustering result can be achieved in
Figure 4(c), however in this condition more data points were dis-
carded as outliers (points in black) because there are not enough
data points in its neighborhood thus the densities are smaller than
the density threshold to be a new cluster.

We also tested the P-Linkage method on multi-dimensional data
sets to see its robustness. Figure 5 shows the clustering result
on a simulated 3D data which is composed of three subsets in
Gaussian distribution. Each subset contains 200 data points. The
number of correct classified data points for each subset is 175
(87.5%), 195 (97.5%) and 191 (95.5%), respectively. In all the
three 2D views in Figure 5, we can see that all the three subsets
were divided well.

4.2 Evaluation on Point Cloud Segmentation

Unlike the traditional K-Means algorithm and the approach pro-
posed by (Rodriguez and Laio, 2014), the proposed P-Linkage
clustering can be employed directly on the applications like point
cloud segmentation where there exist a huge amount of clusters of
data points in complex scenes. To test the robustness of the pro-
posed point cloud segmentation method, we applied it on Vehicle-
mounted, Aerial and Stationary Laser Scanner point clouds. In all

1http://cs.uef.fi/sipu/datasets/c



(a)scale = 5 (b) scale = 5 (c) scale = 2 with merging
Figure 4: Clustering results of the proposed method on the uniformly distribution test data.
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Figure 5: Clustering results of the proposed method on the 3D (XY Z) simulated test data: the original data points and the clustering
result projected onto theXY plane, theY Z plane, and theXZ plane from left to right.

these tests, only the parameterθ was adjusted to get the best seg-
mentation results without any filtering or diluting.

Vehicle-mounted: The segmentation of dense vehicle-mounted
laser scanner points is a challenging task due to the existence
of varied kinds of road furnitures which contain signs and light
poles, road barricades, billboards, the ground and vehicles. In
this work, two vehicle-mounted datasets were tested as shown in
Figure 6(a) captured from an urban street of 355 meters long with
217k points and in Figure 6(b) captured from a small partial of a
city in details containing 120k points. From Figure 6(a) contain-
ing road, buildings, street lamps, vehicles and trees, we observe
that the road surface was clustered into a complete one and sepa-
rated entirely from other objects. Also, the building facades were
discovered quite well. From Figure 6(b), we observe that most
of the building facades were segmented well despite that their
densities vary in a wide range. Those facades perpendicular to
the road (the green slice within the big red ellipse frame) and the
small slices connected with other big ones (the two slices with-
in the small red ellipse frames) were recovered quite well. Fig-
ure 6(c) shows a detailed look of the segmentation result with the
red quadrangles representing different slices, which means that
the segmentation result of the proposed method can be applied
on the extraction of street patches with more specific operations.

Aerial: The first aerial data set tested is composed of 3433k
points, which covers an urban area of 5km×5km. There are
buildings, ground, road and vegetations in this data set. Fig-
ure 7(a) shows a partial result of the whole data set, from which
we can see that the ground was separated by the road (left bottom,
in orange) into two parts, in purple and lemon yellow, respective-
ly, and the ground in purple was segmented into a whole surface
despite of the various objects on the ground. The roofs of build-
ings were segmented into a whole part in general, while some
small structures can also be kept. Figure 7 (b) shows a detailed
view of the segmentation result of the area in red frame in Fig-
ure 7(a), from which we can see that the proposed method can
preserve the details well. The second tested aerial data set is the
ISPRS commission III/4 benchmark on Urban Classification and
3D Building Reconstruction and Semantic Labeling2, the result-
s of which are shown in Figure 7(c) and (d). We can see that
the objects including the trees and building are generally sepa-
rated from the ground which is segmented into a single part, and
the details of the roofs are preserved well as Figure 7(d) shows.

2http://www2.isprs.org/commissions/comm3/wg4/tests.

html

More experiments to evaluate the accuracy and correctness of the
segmentation method will be presented in the futrure work. What
is noteworthy is that to achieve the segmentation results on both
data sets, only the nearest neighbors size K in k-d tree building
and theθ in slices merging is adjusted.

Stationary: The tested stationary laser scanner data set consists
of 2500×1076 data points, which means it can be unfolded into
a 2D image whose column equals 2500 and row equals 1076.
Figure 8 shows the segmentation result on a 2D image, from
which we can see that all the main surfaces were segmented well.
Specifically, we notice that the details of the modulator tubes
on the ceiling were preserved quite well. In this case we set
θ = 20.0◦ due to that there exist many streamlined objects in this
indoor scene, which will result in more surfaces and less planes.

5. CONCLUSION

In this paper we propose a novel hierarchical clustering method
named P-Linkage to discover the clusters in a simple and effi-
cient way by recovering the pairwise linkages on the data point
level. The proposed P-Linkage clustering can be employed di-
rectly on the applications which have huge amount of clusters
and complex scene. Applying the P-Linkage clustering on point
cloud segmentation, we develop an efficient point cloud segmen-
tation algorithm which can handle a huge amount of data points
captured from different scenes. Experimental results on different
dimensional synthetic data from 2D to 4D sufficiently demon-
strate the efficiency and robustness of the proposed P-Linkage
clustering algorithm and a large amount of experimental result-
s on the Vehicle-Mounted, Aerial and Stationary Laser Scanner
point clouds sufficiently illustrate the robustness and efficiency
of our proposed 3D point cloud segmentation algorithm.
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Benkő, P. and Várady, T., 2004. Segmentation methods
for smooth point regions of conventional engineering objects.
Computer-Aided Design36(6), pp. 511–523.

Canny, J., 1986. A computational approach to edge detection.
IEEE Transactions on Pattern Analysis and Machine Intelligence
PAMI-8(6), pp. 679–698.



Figure 8: Segmentation results of the proposed method on the stationary indoor test data withθ = 20.0◦.

Castillo, E., Liang, J. and Zhao, H., 2013. Point cloud segmenta-
tion and denoising via constrained nonlinear least squares normal
estimates. In:Innovations for Shape Analysis, Springer, pp. 283–
299.

Comaniciu, D. and Meer, P., 2002. Mean shift: A robust ap-
proach toward feature space analysis.IEEE Transactions on Pat-
tern Analysis and Machine Intelligence24(5), pp. 603–619.

Ester, M., Kriegel, H.-P., Sander, J. and Xu, X., 1996. A density-
based algorithm for discovering clusters in large spatial databases
with noise. In:Proceedings of the 2nd International Conference
on Knowledge Discovery and Data Mining.
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