
ISPRS Journal of Photogrammetry and Remote Sensing 113 (2016) 1–16
Contents lists available at ScienceDirect

ISPRS Journal of Photogrammetry and Remote Sensing

journal homepage: www.elsevier .com/ locate/ isprs jprs
Optimal seamline detection for multiple image mosaicking via graph
cuts
http://dx.doi.org/10.1016/j.isprsjprs.2015.12.007
0924-2716/� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail addresses: jian.yao@whu.edu.cn (J. Yao), jshan@purdue.edu (J. Shan).
URL: http://cvrs.whu.edu.cn/ (J. Yao).
Li Li a, Jian Yao a,⇑, Xiaohu Lu a, Jinge Tu a, Jie Shan b

a School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, Hubei, PR China
b School of Civil Engineering, Purdue University, 550 Stadium Mall, West Lafayette, IN 47907, USA

a r t i c l e i n f o
Article history:
Received 27 February 2015
Received in revised form 19 December 2015
Accepted 22 December 2015

Keywords:
Multiple image mosaicking
Seamline detection
Graph cuts
Image parallax
Street-view panorama
Aerial images
a b s t r a c t

While mosaicking images, especially captured from the scenes of large depth differences with respective
to cameras at varying locations, the detection of seamlines within overlap regions is a key issue for cre-
ating seamless and pleasant image mosaics. In this paper, we propose a novel algorithm to efficiently
detect optimal seamlines for mosaicking aerial images captured from different viewpoints and for
mosaicking street-view panoramic images without a precisely common center in a graph cuts energy
minimization framework. To effectively ensure that the seamlines are optimally detected in the laterally
continuous regions with high image similarity and low object dislocation to magnificently conceal the
parallax between images, we fuse the information of image color, gradient magnitude, and texture com-
plexity into the data and smooth energy terms in graph cuts. Different from the traditional frame-to-
frame optimization for sequentially detecting seamlines for mosaicking multiple images, our method
applies a novel multi-frame joint optimization strategy to find seamlines within multi-overlapped images
at one time. In addition, we propose simple but effective strategies to semi-automatically guide the seam-
lines by exploiting simple human–computer interaction strongly constraining the image regions that the
seamlines will or won’t pass through, which is often ignored by many existing seamline detection meth-
ods. Experimental results on a large set of aerial, oblique and street-view panoramic images show that
the proposed method is capable of creating high-quality seamlines for multiple image mosaicking, while
not crossing majority of visually obvious foreground objects and most of overlap regions with low image
similarity to effectively conceal the image parallax at different extents.
� 2016 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier

B.V. All rights reserved.
1. Introduction

Image mosaicking is an important and classical problem in the
fields of photogrammetry (Pan et al., 2009, 2014; Chon et al., 2010;
Yu et al., 2012; Wan et al., 2013; Pan and Wang, 2011; Mills and
McLeod, 2013; Du et al., 2008), remote sensing (Kerschner, 2001;
Soille, 2006; Yang et al., 2011; Helmer and Ruefenacht, 2005)
and computer vision (Gracias et al., 2009; Agarwala et al., 2004;
Uyttendaele et al., 2001; Levin et al., 2004; Xiong and Pulli, 2010;
Brown and Lowe, 2007), which is used to merge a set of images
geometrically aligned as precisely as possible into a single compos-
ite image as seamlessly as possible. In ideally static scenes in which
both the photometric inconsistencies and the geometric misalign-
ments are not existed or not obviously visible in overlap regions,
the mosaicked image looks perfect only when the geometric dis-
tance criterion is used. However, in some cases, especially for
street-view panoramic images or oblique photographs, there exist
photometric inconsistencies to different extents in overlap regions
between images due to illumination variations and different expo-
sure settings, which can be solved very well by a series of color cor-
rection, smoothing transition (Levin et al., 2004; Xiong and Pulli,
2009) and image blending (Perez et al., 2003; Prados et al., 2014;
Szeliski et al., 2011; Allene et al., 2008) techniques trying to con-
ceal stitching artifacts by smoothing color differences between
input images. In addition, since input images are captured without
a precisely common projection center from the scenes with large
depth differences with respective to cameras at the same time
(e.g., street-view panoramic images captured from a mobile vehi-
cle) or captured with different viewpoints from scenes at different
times by a single camera (e.g., aerial or oblique images captured
from an airborne platform), such these images cannot be precisely
aligned in geometry. This results in that the geometric positions of
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corresponding pixels from different images may be different. The
image blending techniques can deal with the color differences
along the seamlines but can’t handle the obvious parallax caused
by geometric misalignment. The efficient way to solve this prob-
lem is to detect the optimal seamlines avoiding crossing majority
of visually obvious objects and most of overlap regions with low
image similarity and large object dislocation. If the seamlines
and stitching artifacts are still visible due to color differences, the
image blending technique can be further applied to solve it easily.
This paper focuses on optimal seamline detection despite the pres-
ence of large geometric misalignments for creating visually pleas-
ant image mosaics.

Optimal seamline detection methods search for the seamlines
in overlap regions between images where their intensity or gradi-
ent differences are minimal. Based on the optimally detected
seamlines, multiple aligned images can be mosaicked into a com-
posite image in which the obvious parallax caused by image
misalignments can be magnificently concealed. Many methods
(Kerschner, 2001; Pan et al., 2009; Chon et al., 2010; Yu et al.,
2012; Wan et al., 2013; Pan and Wang, 2011; Mills and McLeod,
2013; Soille, 2006) regarded the optimal seamline detection as
an energy optimization problem and solved it by minimizing a spe-
cial energy function defined to represent the difference between
the original images along the seamlines. For these methods, the
key ideas concentrate on how to define effective energy functions
and how to guarantee the optimality of the solution. The energy
functions are often defined by considering color, gradient and tex-
ture, and are optimized via different optimization algorithms, e.g.,
snake model (Kass and Witkin, 1988), Dijkstra’s algorithm
(Dijkstra, 1959), dynamic programming (Bellman, 1957), and
graph cuts (Boykov et al., 2001; Boykov and Kolmogorov, 2004).

Kerschner (2001) proposed an automated seamline detection
method using twin snake based on the energy function defined
on the similarity of color and texture. The energy optimization
started from two snakes on the opposite borders of the overlap
region, which moved closer during the energy minimization pro-
cess, and the optimal seamline is found when two twin snakes
coincided. But this algorithm requires a high computation cost
and can’t completely overcome the local minimum problem.
Besides the snake model, the Dijkstra’s algorithm was also popu-
larly used for detecting the optimal seamlines. Chon et al. (2010)
designed a novel objective function to evaluate the mismatching
between two images based on the normalized cross correlation
(NCC). Their proposed method first determined the desired level
of maximum difference along the seamline and then applied the
Dijkstra’s algorithm to find the best seamline with the minimal
objective function. Compared with the simple Dijkstra’s algorithm,
their method could find a longer seamline with less pixels with
high energy costs. However, using the Dijkstra’s algorithm for
seamline detection is time consuming as well as needs to give
the start and end points of the seamline. Wan et al. (2013) pro-
posed a vector road-based seamline determination algorithm
ensuring that the seamline follows the centerlines of wide streets
and avoids to cross foreground objects. This algorithm firstly built
a weighted graph by overlapping the extracted skeleton of the
overlap regions and vector roads, and then found the lowest cost
path between two intersections of adjacent image polygons by
the Floyd–Warshall algorithm (Floyd, 1962). However, roads may
not be completely and automatically extracted from aerial or satel-
lite images. In addition, in the urban areas, the roads are often
occluded by buildings and trees, and occupied by moving vehicles
or pedestrians. Therefore, it is not the best choice for seamline
detection when roads cannot be accurately figured out. Another
alternative method is the dynamic-programming-based optimal
seamline detection strategy, which is less time-consuming than
the Dijkstra’s algorithm. Yu et al. (2012) proposed to combine
the pixel-based similarity defined by color, edge and texture infor-
mation with the region-based saliency map based on human atten-
tion model to guide the optimal seamline searching process of the
dynamic programming (DP) algorithm. However, the DP algorithm
also needs to know the start and end points of the seamline. Com-
pared with the above-mentioned energy optimization algorithms,
the graph cuts (Boykov et al., 2001; Kolmogorov and Zabin,
2004) can effectively find the global solution with a less computa-
tion cost and doesn’t require the start and end points of the
seamline.

Nowadays, graph cuts has been popularly applied in many
fields of computer vision, such as image segmentation (Rother
et al., 2004; Boykov and Funka-Lea, 2006; Boykov and Jolly,
2001), stereo matching (Kolmogorov and Zabih, 2001; Hong and
Chen, 2004; Wang and Lim, 2011) and recently in image mosaick-
ing (Gracias et al., 2009; Kwatra et al., 2003; Agarwala et al., 2004).
For example, Rother et al. (2004) provided a powerful semi-
automatic algorithm for foreground object extraction based on
iterated graph cuts, named as ‘‘GrabCut”. Kolmogorov and Zabih
(2001) presented an energy minimization formulation of the corre-
spondence problem with occlusions, and provided a fast approxi-
mation algorithm based on graph cuts. In the filed of image
mosaicking, Kwatra et al. (2003) first applied the graph cuts algo-
rithm to find the seamline for image and video synthesis. Their
proposed method defined an energy function based on the differ-
ence of color intensities and gradient magnitudes along horizontal
and vertical directions and used graph cuts to find optimal seamli-
nes between each patch region. Agarwala et al. (2004) provided a
framework to easily create a single composite image by using
graph cuts to choose good seamlines within the constituent
images, which needs an intuitive human–computer interaction
for defining local and global objectives. Gracias et al. (2009) com-
bined the watershed segmentation and the graph cuts algorithm
to detect the optimal seamlines. Their algorithm began with creat-
ing a set of watershed segments on the difference image of overlap
regions followed by finding the solution via graph cuts between
those segments instead of the entire set of pixels. However, it only
considered the intensity difference when computing the cost of
each pixel. As a result, this difference image has lost some neces-
sary information for image segmentation.

All the existing graph-cuts-based optimal seamline detection
algorithms only focused on panoramic images and have not been
tested on aerial images. In this paper, we formulate a unified graph
cuts minimization framework for mosaicking aerial or street-view
panoramic images with geometrical misalignments. To obtain
high-quality seamlines, not only both color intensities and gradient
magnitudes are considered in the energy cost of each pixel but also
the texture complexity inspired by the HOG (Histogram of Ori-
ented Gradient) feature descriptors (Dalal and Triggs, 2005) was
integrated into the used energy cost function. This then can sup-
press the large image differences in specific regions such as roads
and woodlands suitable to be passed through by seamlines. To
quickly find optimal seamlines among multiple images for
mosaicking, the traditional strategy, named as the frame-to-frame
optimization, is to select one image as the reference one to which
other images are sequentially merged based on the optimal seam-
line between the current composite image and the newly intro-
duced one. To effectively find optimal seamlines from multiple
aligned images with multi-overlapped regions, we propose to
directly apply the multi-label graph cuts energy minimization
optimization on all the images to find the optimal solution, which
is called as the multi-frame joint optimization strategy. In addition,
to guarantee that the seamlines won’t pass through poor image
regions with obvious parallax, we provide simple but effective
strategies to semi-automatically guide the seamlines by exploiting
a human–computer interaction strongly constraining the image
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regions that the seamlines will or won’t pass through, which is
often ignored by many existing seamline detection methods.

The remaining part of this paper is organized as follows. Sec-
tion 2 introduces the graph cuts energy minimization framework
for finding optimal seamline between two aerial or street-view
panoramic images, consisting of a brief introduction of graph cuts,
the basic energy definitions, and the labeling optimization. Two
strategies for optimal seamline detection from multiple images
are detailed in Section 3. The human–computer interaction
strategies for semi-automatically finding optimal seamlines are
presented in Section 4. Experimental results on challenging
street-view panoramic and aerial images are presented in Section 5
followed by the conclusions drawn in Section 6.
2. Two-image seamline detection

In overlap regions between two images, we compute the energy
cost of each pixel by considering the color intensities, gradient
magnitudes and texture complexities. We regard each pixel as a
node in the graph and assume that each node has four cardinal
neighbors in the 4-neighborhood. The link between two adjacent
nodes is regarded as an edge in the graph and its weight cost is
defined as the sum of energy costs of these two nodes. The graph
cuts algorithm is used to associate the label of each pixel to one
of the input source images with the minimum energy cost.
2.1. Graph cuts

Before giving a detailed description of our algorithm, we briefly
review the graph cuts optimization algorithm. In computer vision,
many problems are naturally stated in terms of energy minimiza-
tion and can be regarded as a labeling optimization problem. The
graph cuts method introduced by Boykov et al. (2001) has been
quickly used in many applications of computer vision. The basic
idea is to first construct a weighted graph where each edge weight
cost represents the value of the corresponding energy cost func-
tion, and then to find the minimum cut in this graph based on
the max-flow or min-cut algorithm (Boykov and Kolmogorov,
2004). Let P be the set of all elements (i.e., nodes in the graph),
NðPÞ be the set of all element pairs in the neighborhood (i.e., edges
in the graph), and L be the set of all labels. The objective is to find a
labeling map f assigning a label f p 2 L to each element p 2 P by
minimizing the following energy function (Boykov et al., 2001):

Eðf Þ ¼
X
p2P

Dpðf pÞ þ
X

ðp;qÞ2N ðPÞ
Vp;qðf p; f qÞ; ð1Þ

where Dpðf pÞ denotes the cost of assigning the label f p to the ele-
ment p and Vp;qðf p; f qÞ defines the cost of assigning the labels f p
and f q to the element pair p and q, respectively, which are often
called as the data energy term and the smooth energy term, respec-
tively. If the labels f p and f q are the same, the value of the smooth
cost Vp;qðf p; f qÞ would be equal to 0.

2.2. Energy definition

We assume that all input source images have been geometri-
cally aligned as precisely as possible. However, there always exist
geometric misalignments between these images at different
extents due to that they are captured from the scenes of large
depth differences by a single camera with different viewpoints or
by multiple cameras at varying locations. To describe the definition
of the energy cost function clearly, we first consider the simple
case for a composite image I from two images Ip and Iq with an
overlap. The energy cost CðxÞ of the pixel x ¼ ðx; yÞ in I is com-
prised of three terms: the color difference term CcðxÞ, the gradient
magnitude term CgðxÞ and the texture complexity term CtðxÞ, i.e.,

CðxÞ ¼ CcðxÞ þ CgðxÞ
� �� CtðxÞ: ð2Þ

The color difference is often applied in the energy cost function
to detect the optimal seamlines for image mosaicking. However, in
our algorithm, the color difference for the pixel x of I in overlap
regions is computed in the HSV (Hue, Saturation, Value) color
space rather than in the popularly used RGB color space or the
grayscale space, which is defined as:

CcðxÞ ¼ wv jVpðxÞ � VqðxÞj þ ð1�wvÞjSpðxÞ � SqðxÞj; ð3Þ
where VpðxÞ and SpðxÞ denote the intensity values of V and S chan-
nels of x in Ip, respectively, and there are the same meanings for
VqðxÞ and SqðxÞ. The weight coefficient wv 2 ½0;1� is used to balance
the influence of the differences at the V and S channels, which was
set as wv ¼ 0:95 in this paper.

The image parallaxes within the overlap regions with large gra-
dient magnitudes are more salient in vision. To ensure that the
seamlines can round such these image regions, we introduce
another energy term CgðxÞ for the pixel x based on the gradient
magnitudes as well as their absolute differences, i.e.,

CgðxÞ ¼ 1
4

Gx
p ðxÞ

��� ���þ Gx
q ðxÞ

��� ���þ Gy
p ðxÞ

��� ���þ Gy
q ðxÞ

��� ���� �

þ Gx
p ðxÞ � Gx

q ðxÞ
��� ���þ Gy

p ðxÞ � Gy
q ðxÞ

��� ���; ð4Þ

where Gx
p ðxÞ and Gy

p ðxÞ denote the horizontal and vertical gradient
magnitudes of x in Ip, respectively, which are calculated using the
Sobel operator in the grayscale space, and there are the same mean-
ings for Gx

q ðxÞ and Gy
q ðxÞ.

Based on the above defined two energy costs in term of color
differences and gradient magnitudes, the optimally found seamli-
nes should ensure that the differences along the seamlines are
minimal and try to avoid passing through visually obvious fore-
ground objects. However, sometimes, some specific regions such
as roads, sky and woodlands are more suitable to be located in
the seamlines as the image differences in these regions are not easy
to be observed although both color differences and gradient mag-
nitudes may be large. To solve this problem, we propose a new tex-
ture complexity measurement to distinguish those regions
stemming from the HOG feature descriptors (Dalal and Triggs,
2005), which has been widely and successfully used in computer
vision and image processing for the purpose of object detection,
such as human detection (Dalal and Triggs, 2005; Zhu et al.,
2006). The gradient orientation OðxÞ of the pixel x is computed
firstly as OðxÞ ¼ arctan GyðxÞ=GxðxÞ� �

where GyðxÞ and GxðxÞ
denote the gradient magnitude values of x in the vertical and hor-
izontal directions, respectively. All the gradient orientations are
converted into the range of ½0;2p�. Then, we compute the his-
togram of oriented gradients HðxÞ comprised of B bins over the
k� k size window region N k�kðxÞ centered at the pixel x in an
image I where B ¼ 12 and k ¼ 11 were used in this paper. Based
on the histogram of oriented gradients, the texture complexity at
the pixel x is defined as:

CðxÞ ¼ 1� cþPB
b¼1 min HbðxÞ;HðxÞ

� �
cþPB

b¼1HbðxÞ

¼
PB

b¼1HbðxÞ �
PB

b¼1 min HbðxÞ;HðxÞ
� �

cþPB
b¼1HbðxÞ

; ð5Þ

where HbðxÞ denotes the frequency of the b-th bin in HðxÞ and
HðxÞ represents the mean of frequencies of all bins, i.e.,
HðxÞ ¼ 1

B

PB
b¼1HbðxÞ. The parameter c represents a predefined posi-



Fig. 1. An original aerial image (Left) and its normalized texture complexity maps with different values of d (d ¼ 0;4;8 from the second column to the last) where the lighter
regions indicate higher texture complexities.

Fig. 2. The four typical regions (Top) in street-view panoramic images and their corresponding normalized texture complexity maps (Bottom) where the lighter regions
indicate higher texture complexities.
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tive constant avoiding the divide overflow in the case of HðxÞ ¼ 0
and suppressing producing a high texture complexity value at the
image regions with low gradient magnitudes but consistent gradi-
ent orientations, which is defined as:

c ¼ 4k2 � d; ð6Þ

where the constant ‘‘4” is the normalization factor of gradient mag-
nitudes based on the Sobel operator, k denotes the window size
used for calculating HOG, and d is a user-controlled variable. An
example illustrating the benefit of using c for computing the texture
complexity in Eq. (5) is presented in Fig. 1 where the image regions
of roads and water surfaces in an aerial image are gradually sup-
pressed with low texture complexity values with the increasing of
the value of d. Fig. 2 shows the normalized texture complexity maps
of four typical regions (buildings, vehicles, roads, and trees) in
street-view panoramic images with d ¼ 8 used if not specifically
stated in this paper. Obviously, if the pixel x is located in the local
region with poor texture like sky or strongly repetitive patterns like
roads or woodlands, the frequencies of different bins in the his-
togram is approximately equal, so CðxÞ is small and close to 0. In
contrast, CðxÞ is large and close to 1 if the frequencies of few bins
are high and the rest are low.

Based on the definition of the proposed texture complexity, the
texture complexity cost term CtðxÞ for the pixel x in overlap
regions of I is defined as:

CtðxÞ ¼ CpðxÞ þ CqðxÞ; ð7Þ

where CpðxÞ and CqðxÞ represent the texture complexity values of x
in Ip and Iq, respectively. In this way, we can apply CtðxÞ to constrain
the color differences and gradient magnitudes in the regions with
poor texture or strongly repetitive patterns without affecting other
foreground object regions with rich and strong edges as used in
Eq. (2).
2.3. Labeling optimization

We formulate the optimal seamline detection as an energy min-
imization problem and use graph cuts to find the solution, as the
two-label graph cuts optimization example shown in Fig. 3. The
energy cost EðIÞ of the composite image I from two geometrically
aligned images Ip and Iq is comprised of the data energy term
EdataðIÞ and the smooth energy term EsmoothðIÞ, i.e.,
EðIÞ ¼ EdataðIÞ þ EsmoothðIÞ: ð8Þ

The data energy term EdataðIÞ represents all energy costs for
associating each pixel in one of two input images Ip and Iq, i.e.,

EdataðIÞ ¼ EdataðIpÞ þ EdataðIqÞ; ð9Þ
where EdataðIiÞ; i ¼ p or q, denotes the sum of energy costs of assign-
ing pixels in the composite image I with the label LðIiÞ of the image
Ii, i.e.,

EdataðIiÞ ¼
X
x2I

Di
lðxÞ; ð10Þ

where x denotes one pixel belonging to I and Di
lðxÞ represents the

energy cost of assigning x with the label LðIiÞ of the image Ii, which
is defined as Di

lðxÞ ¼ 0 if x 2 Ii, i.e., the labels LðxÞ ¼ LðIiÞ, otherwise

Di
lðxÞ ¼ 1 if x R Ii, i.e., the labels LðxÞ – LðIiÞ. According to the

above definition, for each pixel x in I , its data energy cost only
depends on whether it is inside the valid region of one image.

In Section 2.2, we have introduced how to compute the energy
cost for each pixel on the image pair Ip and Iq with an overlap. The
smooth energy item is used to punish assigning different labels to
adjacent pixels. So, we define the smooth energy cost Esmoothðx; yÞ
for two adjacent pixels x and y in the composite image I as the
sum of their individual energy costs as follow:

Esmoothðx; yÞ ¼ CðxÞ þ CðyÞ; ð11Þ



Fig. 3. An illustration example of detecting optimal seamline between two images
via graph cuts. The thickness of lines between adjacent pixels represents the value
of the energy cost and the ‘‘cut” denotes the minimum cut, which means the
optimal seamline.
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where CðxÞ and CðyÞ are the energy costs of the pixels x and y
defined in Eq. (2). So, the smooth energy term EsmoothðIÞ can be
defined as:

EsmoothðIÞ ¼
X

ðx;yÞ2N ðIÞ
rðLðxÞ;LðyÞÞ � Esmoothðx; yÞ; ð12Þ

where NðIÞ denotes the set of all adjacent pixel pairs in the
4-neighborhood, and LðxÞ and LðyÞ represent the labels of the
adjacent pixels x and y, respectively. The function rðLðxÞ;LðyÞÞ is
a binary logic function defined as rðLðxÞ;LðyÞÞ ¼ 0 if LðxÞ ¼ LðyÞ
otherwise rðLðxÞ;LðyÞÞ ¼ 1 if LðxÞ – LðyÞ.

Now, all energy functions have been defined as those used in
the standard graph cuts energy minimization framework described
in Section 2.1. Therefore, we can directly apply the graph cuts algo-
rithm to find the optimal solution of the seamline in the overlap
image region between two geometrically aligned images. To speed
up the optimization process, we can decrease the number of ele-
ments used in graph cuts by only considering all the pixels in the
overlap regions between images as the valid elements in the graph
because only the labels of those pixels in overlap regions need to
be optimally determined while the labels of other pixels can be
directly set as the labels of their own corresponding images.

3. Multi-image seamline detection

The optimal seamline detection algorithm via graph cuts for a
pair of images with an overlap has been clearly stated in Section 2.
In practical applications, we need to create an image mosaic from
multiple images. If there does not exist any overlap region formed
by more than two images, i.e., all the overlap image regions are
two-overlapped, the seamlines can be independently and sepa-
rately found via graph cuts from the pairs of overlapped images.
However, there often exist multi-overlapped regions in multiple
Fig. 4. An illustration of two different optimization strategies for detecting optimal seam
and C: (a) the traditional frame-to-frame optimization strategy; (b) the multi-frame joint
while the black ones denote the seamlines already found. (For interpretation of the refer
article.)
street-view panoramic images blended into a 360�-view panorama
and in multi-strip aerial images mosaicked into a composite wide-
angle image. In this paper, we propose a novel multi-frame joint
optimization strategy to effectively deal with such this case of
multi-overlapped images via multi-label graph cuts, as illustrated
in Fig. 4(b).

3.1. Frame-to-frame optimization

To efficiently find optimal seamlines among multiple geometri-
cally aligned images for mosaicking, the traditional strategy is to
select one image as the reference one to which other images are
sequentially merged based on the optimal seamline between the
current composite image and the newly introduced one. In this tra-
ditional optimization strategy, the seamline is always optimally
found just between two images, named as the frame-to-frame opti-
mization strategy. Many optimal seamline detection algorithms
(Gracias et al., 2009; Xiong and Pulli, 2010; Wan et al., 2013) apply
this strategy when dealing with multiple images. An illustration
example is shown in Fig. 4(a) where there are three input images
A;B and C overlapped by each other. It first finds the optimal seam-
line between the images A and B, which is used to create a compos-
ite image AB, and then finds the optimal seamline between the
newly introduced image C and the previously composite image
AB. The key advantage of using this traditional optimization strat-
egy is that only one overlap region between two images are consid-
ered in the graph cuts optimization, which can result in a low
computation cost due to few number of elements and only two
labels in each optimization (Gracias et al., 2009). Furthermore, it
can be sped up in parallel. For example, six individual seamlines
will be detected from six camera views for creating a 360�-view
panorama, as described in experimental results reported in Sec-
tion 5 by the frame-to-frame optimization strategy, which are
comprised of five vertical seamlines from five adjacent horizontal
camera view pairs and one horizontal seamline between the top
camera view and the horizontal camera ones. First those five verti-
cal seamlines can be separately detected in parallel, which are used
to create a composite image from horizontal five camera views.
Then the last horizontal seamline can be found between the top
camera view and the horizontal composite image. However, the
disadvantage of this traditional optimization strategy is that the
seamlines in multi-overlapped regions can’t be optimally detected
in the global optimization sense.

3.2. Multi-frame joint optimization

To more effectively find globally optimal seamlines from
multiple aligned images with multi-overlapped regions, we
A B

C 

ABC 

lines from multi-overlapped regions among three geometrically aligned images A;B
optimization strategy. The red contours represent the currently optimized seamlines
ences to color in this figure legend, the reader is referred to the web version of this
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propose to directly apply the multi-label graph cuts energy mini-
mization optimization on all the images at one time to find the
optimal solution, which is called as the multi-frame joint optimiza-
tion strategy. An illustration example of this optimization strategy
is shown in Fig. 4(b) where the seamlines among three images
overlapped by each other are optimized via multi-label graph cuts
at one time. Compared with the traditional optimization strategy,
in which the detected seamlines may be varied while the different
composite sequence is applied, the multi-frame joint optimization
strategy can directly obtain the final image mosaic based on the
seamlines globally optimized at one time. But, it needs a higher
computation cost due to that the labels of multi-overlapped image
regions will be optimized as one of multiple labels, instead of one
of two labels in the frame-to-frame optimization, and it is difficult
for implementing an efficient parallel optimization for mosaicking
a large set of images.

To apply the multi-label graph cuts for finding the seamlines
from a set of N geometrically aligned images fIigNi¼1 at one time,
we need to accordingly modify the definitions of the energy func-
tions. The data energy term will be simply modified as:

EdataðIÞ ¼
XN
i¼1

EdataðIiÞ; ð13Þ

where EdataðIiÞ is computed as the same in Eq. (10). The smooth
energy cost of two adjacent pixels x and y in the final composite
image I is re-defined as:
Fig. 5. Illustrative examples for human–computer interaction: (a) the seamline won’t
manually assigned with the labels LðAÞ and LðBÞ of the images A and B, respectively; (c) t
of pixels in Sa;Sb and Sc are manually assigned with the labels LðAÞ;LðBÞ and LðCÞ of the
detected seamlines while the red solid curves denote the optimized seamlines based on t
figure legend, the reader is referred to the web version of this article.)
Esmoothðx; yÞ ¼ max
ðIp ;IqÞ2PðIÞ

Eðp;qÞ
smoothðx; yÞ; ð14Þ

where PðIÞ represents the set of all pairs of images with overlap
regions, ðIp; IqÞ denotes a pair of images with an overlap, and

Eðp;qÞ
smoothðx; yÞ denotes the smooth energy cost of the pixel pair ðx; yÞ

with respective to the image pair ðIp; IqÞ which is calculated as the
same in Eq. (11). The total smooth energy term of the whole com-
posite image I from multiple images is still calculated as the same
in Eq. (12). With these energy modifications, all the seamlines can
be optimally found via multi-label graph cuts at one time.
4. Seamline detection via human–computer interaction

Inevitably, like any other seamline detection algorithm, ours
cannot guarantee that the detected seamlines could meet all users’
requirements in all the overlap regions. Thus, a simple human–
computer interaction is needed as a complement. To make end-
users flexibly and quickly guide the seamlines passing through
the regions they expect, we design the following human–computer
interaction ways.

Firstly, the end-users can clearly mark some image regions in
the final composite image that the seamlines won’t pass through,
as illustrated in Fig. 5(a). It can be solved by modifying the smooth
energy cost of each adjacent pixel pair ðx; yÞ in those image regions
as Esmoothðx; yÞ ¼ 1.
pass through the marked image region S; (b) the labels of pixels in Sa and Sb are
he seamline will horizontally pass through the marked image region S; (d) the labels
images A;B and C, respectively. The blue dash curves in blue represent the original

he human–computer interaction. (For interpretation of the references to color in this



Fig. 6. The two geometrically aligned UAV oblique images in (a)–(b) and the normalized energy cost maps for their overlap region without the use of the texture complexity
energy term in (c) and with its use in (d) where the brighter regions indicate higher energy costs, i.e., the larger image differences.
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Secondly, the end-users can assign the pixels in some image
regions with known image labels, as illustrated in Fig. 5(b) for
two-overlapped images and in Fig. 5(d) for three-overlapped
images, which can be solved by modifying the data energy costs
of those pixels as follows. Let S ¼ fxkgKk¼1 be the set of K selected
pixels and LðxkÞ be the manually assigned label for the selected
pixel xk 2 S. The data energy cost of each selected pixel xk 2 S is
modified as:

Di
lðxkÞ ¼

0; LðxkÞ ¼ LðIiÞ;xk 2 Ii;
1; LðxkÞ– LðIiÞ;xk R Ii;

�
i ¼ 1;2; . . . ;N: ð15Þ

With such these modifications, the graph cuts optimization is
applied again to obtain the expected seamlines.

Sometimes, the end-users expect that the seamlines will pass
through some specific region, like roads or green lands in urban
aerial image mosaicking, as illustrated in Fig. 5(c). To achieve this
goal, we can assign two specifically different image labels for the
left and right boundary points while expected to be passed through
vertically, or for the up and down boundary points while expected
to be passed through horizontally.

5. Experiments and evaluation

Extensive experiments on representative street-view panora-
mic, aerial, and oblique images were conducted to comprehen-
sively evaluate the performance of our proposed optimal
seamline detection algorithm for creating pleasant image mosaics.
To greatly speed up the optimization, we simply down-scaled the
input images with a scale factor S ¼ 0:2 for computing the energy
costs in graph cuts while the detected seamlines were drawn in the
original scaled images. Our algorithm was implemented with C++
under Windows and tested in a computer with an Intel Core
i7-4770 at 3.4 GHz and the 16 GB RAM memory.
5.1. Texture complexity energy

In this section, we conducted two experiments on two groups of
oblique images, captured by the Unmanned Aerial Vehicle (UAV)
platform, to prove the effectiveness and superiority of our pro-
posed texture complexity energy term described in Section 2.2.
Each group is comprised of three images with a size of
7160� 5406 pixels. These input oblique images were first geomet-
rically aligned as precisely as possible into a common coordinate
system with the homographic model. Fig. 6 shows two geometri-
cally aligned images (see Fig. 6(a) and (b)) and their normalized
energy cost maps for the overlap image region, computed without
the use of the texture complexity energy term in Eq. (2) (i.e.,
CtðxÞ ¼ 1) (see Fig. 6(c)) and with its use (see Fig. 6(d)). From
Fig. 6(d), we observed that the energy costs of some specific image
regions covered by roads and woodlands were greatly decreased
when the texture complexity energy term was considered, which
has achieved our expected objective.

The seamline detection results without and with the use of the
texture complexity energy term in the first group of three oblique



Fig. 7. Visual comparison of the seamline detection results in two groups of three geometrically aligned oblique images when the texture complexity energy term was used
(Right: (b) and (d)) or not (Left: (a) and (c)).
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images are shown in Fig. 7(a) and (b). From the whole seamline
detection results and especially the detailed local regions shown
in Fig. 7(a) and (b), we observed that the seamline, as shown in
Fig. 7(b), detected with the use of the texture complexity energy
term is much better than the seamline, as shown in Fig. 7(a),
detected without its use. Noticeably, the seamline successfully
rounded some buildings as expected when the texture complexity
energy term was considered, which more possibly constrains the
seamline to pass through image regions covered by roads and
woodlands. While only considering the color difference and gradi-
ent magnitude energy terms, the seamline passed through some
buildings instead of the nearby grassland, as shown in Fig. 7(a),
due to that the color differences and gradient magnitudes in these
image regions covered by the buildings and the nearby grassland
are relatively large in the same level. In addition, with the use of
the texture complexity energy term, the seamline in the image



Fig. 8. The image overlap regions of six geometrically aligned and warped images in the 360� street-view panoramic view where the black, the green and the red represent
the no-overlapped, two-overlapped, multi-overlapped image regions, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 9. The seamline detection results via Enblend (Left), the traditional frame-to-frame optimization (Middle) and the multi-frame joint optimization (Right).

1 Available at http://enblend.sourceforge.net/.
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regions covered by roads was better detected out. In the aspect of
computational cost, without the use of the texture complexity
energy term, our algorithm took around 86.25 s in the above
experiment consisting of all the elapsed times in energy computa-
tion and graph cuts optimization. However, with its use, our algo-
rithm only took around 62.59 s, although the energy computation
time has increased due to the use of texture complexity term. This
is mainly because the optimal solution can be more easily found
via graph cuts when the texture complexity energy term is used.

The experimental results on another group of three geometri-
cally aligned oblique images are presented in Fig. 7(c) and (d)
and the similar conclusions can be drawn. The computational
times of our algorithm without the use of the texture complexity
and with its use are 34.78 and 32.69 s, respectively.

5.2. Multi-frame joint optimization

To evaluate the performance of our proposed multi-frame joint
optimization strategy for multi-overlapped images, we selected
two sets of street-view panoramic images for testing. A 360�-view
panorama was obtained by mosaicking six images captured by an
integrated multi-camera equipment with six Nikon D7100 cameras
of 24 million pixels with wide-angle lenses mounted on a mobile
vehicle platform. Six camera images were warped into a common
coordinate system with the image size of 12;000� 6000 pixels by
a reliable geometrical alignment. As shown in Fig. 8, the overlap
image regions in six street-view panoramic images warped from
original camera ones are comprised of two-overlapped and
multi-overlapped regions.

The comparison results on two groups of street-view panoramic
images with the open-sourced software Enblend1 which also
applied graph cuts to find the optimal seamlines, the traditional
frame-to-frame optimization strategy and the proposed
multi-frame joint one are shown in Fig. 9. Via the traditional
frame-to-frame optimization strategy, in total six individual
seamlines were sequentially detected out, which are comprised of

http://enblend.sourceforge.net/


Fig. 10. Illustrative examples of semi-automatic seamline detection via human–computer interaction on three image pairs: (a) the seamline rounding the manually marked
red box region; (b) the seamline passing through the manually marked red box region; (c) the seamline with known image labels for the manually marked regions, the blue
box region is labeled as the left image and the red box region is labeled as the right image. The original seamline detection results are shown in the left and the re-optimized
ones are shown in the right. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. The original seamline detection results (Top) and the re-optimized ones (Bottom) via simple human–computer interaction on multi-overlapped images.
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five vertical seamlines independently found from five pairs of images
in the horizontal direction and one horizontal seamline between the
top camera image and the bottom composite image from five hori-
zontal images, and Enblend also applied this strategy. In the multi-
frame optimization strategy, all the seamlines were found at one
time. From the results shown in Fig. 9, we observed that our pro-
posed algorithms significantly outperformed the Enblend. At the
same time, the seamlines produced by the multi-frame joint opti-
mization are more reasonable than ones generated by the traditional
frame-to-frame optimization due to that we have considered all
image information in all overlap regions at one time, especially in
multi-overlapped regions.

In the aspect of optimization efficiency, the multi-frame joint
optimization in the above experiment averagely took 38.56 s on
two groups of images, which is more than double of the elapsed
time, 15.15 s on average, via the frame-to-frame optimization. If
parallel optimization is applied, the elapsed running time via the
frame-to-frame optimization can be greatly decreased.

5.3. Human–machine interaction

To illustrate how to guarantee that the seamlines will pass
through or round some specific regions we expect by introducing
simple human–computer interaction operations, we tested our
proposed semi-automatic detection strategies on several groups
of street-view panoramic images with two-overlapped and multi-
overlapped regions. The original seamline detection results and
the re-optimized ones under the guide of simple human–computer



Fig. 12. An illustrative example of seamline editor via OrthoVista: (a) the original seamline detected by OrthoVista, which passes through the building in the red box; (b) the
manually drawn seam polygon in yellow; (c) the newly edited seamline rounding the building along the boundary of the manually drawn seam polygon. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. The seamline results of two groups of aerial images captured in Anyang, China. Each group consists of four images selected from two adjacent strips.

2 Available at http://www.trimble.com/.
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interaction operations within two-overlapped regions of three
image pairs are shown in Fig. 10. In Fig. 10(a), the original seamline
passes through the tree trunk and the end-user manually marked a
red box region on this tree trunk making the re-optimized seam-
line can round it based on the modified smooth energy costs for
the adjacent pixels in the marked box region as described in
Section 4. In Fig. 10(b), the original seamline cuts off the rear of a
car due to the severe geometrical misalignment existed in the
image regions close to the cameras whose projection centers are
not precisely the same. In this example, the end-user strictly con-
strained the seamline passing through the red box manually
marked on the roads to completely avoid cutting off the rear. In
Fig. 10(c), the original seamline gets through the building and
the pole, which was adjusted well by manually assigning the
known image labels for the selected regions. A human–computer
interaction illustrative example for multi-overlapped images via
the multi-frame joint optimization is presented in Fig. 11 where
the original seamlines pass through the buildings with obviously
visible parallaxes, which were successfully rounded by manually
labeling two red rectangle regions as a part of the right-down
image and re-performing the multi-label graph cuts optimization
based on the modified data energy costs for the pixels in the
selected regions.

As we known, there exist many commercial tools for manually
editing the seamlines, for example, the popularly used software
Trimble-Inpho OrthoVista.2 Fig. 12 presents an illustrative example
of seamline editor via OrthoVista, from which we observed that the
original seamline detected by OrthoVista passes through the building
in the red box, as shown in Fig. 12(a). We used Orthovista to manu-
ally edit it by drawing a seam polygon in this region which repre-
sents the new seamline, as shown in Fig. 12(b). At last, the new
edited seamline were achieved, which successfully rounds the build-
ing along the boundary of the manually drawn polygon, as shown in
Fig. 12(c). This seamline editor method needs users to draw the new
seamline aided by the seam polygon for each failed region, which is a

http://www.trimble.com/


Table 1
Statistical results of the seamlines found in the Anyang aerial images.

Seamline 1 (Fig. 13(a)) Seamline 2 (Fig. 13(b)) #Total

#Pixels 57,668 61,138 118,806
Numbers of obvious objects passed through 10 buildings 3 buildings and 1 bridge 13 buildings and 1 bridge
Visible seam length (in pixels) 1064 267 1331
Times (s) 106.47 111.28 217.75

Fig. 14. The seamline detection results of five sequential aerial images of Toronto, Canada, and four detailed local image regions.
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tedious work for the users. However, in our proposed human–com-
puter interaction strategies, the users don’t need to draw the new
seamline for each failed region, they only need to tell our algorithm
some necessary informations by simply marking some regions that
the seamlines will or won’t pass through in the failed regions and
the remaining works will be done by our algorithm automatically.
For example, if there exist many cars in the road, users of OrthoVista
need to carefully draw the seam polygon to avoid passing through
those cars, but in our proposed algorithm, users just need to tell
our algorithm that the seamline should pass through this road, and
the cars will be rounded automatically. In addition, our algorithm
provides three different ways to modify the seamlines, which are
more flexible than the seamline editor method used in OrthoVista.
For the undesired seamline presented in Fig. 12(a), we have several
more simple methods to solve it according to the strategies
presented in Section 5.3. Firstly, the building regions can be marked
as the region that the seamline won’t pass through, and then our
algorithm can automatically find another more better seamline
avoiding pass through this building. Secondly, we can label the pix-
els in this building as one image, so the whole building will comes
from only one image and the seamline won’t pass through it. Lastly,
we also can simply let the seamline pass through the neighboring
road by marking the road as the region that the seamline will pass
through. Of course, those ways can be combined arbitrarily to



Fig. 15. The overlap regions of A3 and A4 in Fig. 14 and especially the detailed local regions including the corresponding input image regions of Fig. 14(e).

Table 2
Statistical results of the seamlines found in the sequential five Toronto aerial images.

Seamline 1 (A1;A2) Seamline 2 (A2;A3) Seamline 3 (A3;A4) Seamline 4 (A4;A5) #Total

#Pixels 18,266 16,738 17,870 16,784 69,656
Numbers of obvious objects passed through 2 buildings and 2 cars 1 building and 3 cars 4 buildings and 1 car 1 building 8 buildings and 6 cars
Visible seam length (in pixels) 74 122 319 45 515
Times (s) 12.45 16.82 13.57 14.41 57.24
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Fig. 16. Optimization performance with different down-scaling factors on five Toronto aerial images: (a) the optimization computational time curve; (b) the mosaicking
results based on the detected seamlines in the image region shown in Fig. 14(e).
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modify the seamline more flexibly and effectively. In addition, it is
very difficulty for OrthoVista to manually edit the seamlines in
multi-overlapped regions however it can be easily achieved by our
proposed human–machine interaction strategies.
5.4. Seamline detection on aerial images

To prove that our algorithm can handle different types of
images, we selected two different types of aerial images captured
from different urban areas for testing. The first type of aerial
images consists of two groups of aerial ones captured in Anyang,
China. Each group is comprised of four images with a size of
9334� 6000 pixels selected from two adjacent strips. The seamline
detection results via the multi-frame joint optimization are shown
in Fig. 13, from which we observed that almost all the seamlines
follow roads and green lands while avoid passing through build-
ings, cars and pedestrians at the same time, which can magnifi-
cently conceal the parallaxes caused by the geometrical
misalignments in different extents. The detailed statistical results
of this experiment on Anyang aerial images are listed in Table 1.
The second row in Table 1 presents the lengths of the correspond-
ing seamlines. The numbers of obvious objects passed through by
seamlines are presented in the third row. Considering that the
lengths of seamlines measured by different people may be
different, to reduce the influence of subjectivity, the lengths of vis-
ible seams with obvious parallax in the fourth row in Table 1 were



Fig. 17. The seamlines of five Toronto images generated by OrthoVista and four detailed local image regions. The red regions in both ends of the mosaicked image indicate the
no-overlapped regions, which were generated by OrthoVista. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
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measured by five different people and then averaged. The last row
shows the computational time for finding the optimal seamline via
our proposed algorithm. From Table 1, we found that there exist 10
buildings crossed by the seamlines as shown in Fig. 13(a), but most
of them are located in the endpoint regions of the seamlines whose
endpoints were formed by the overlapping intersection, which is
difficult to bypass in most algorithms.

The second type of aerial images is comprised of five images
with a size of 5750� 3750 pixels in Toronto, Canada provided by
ISPRS,3 as shown in Fig. 14. These five images were stitched via
the frame-to-frame optimization, which are denoted as
A1;A2;A3;A4 and A5 from left to right in Fig. 14(a). Although the
buildings in those regions are very tall, our algorithm also could find
the high-quality seamlines avoiding passing through them, as shown
in Fig. 14(b)–(d). However, we also observed that one seamline can-
not successfully round a tall building as shown in Fig. 14(e). From
3 Available at http://www2.isprs.org/commissions/comm3/wg4/tests.html.
corresponding input image regions shown in Fig. 15, we found that
the roads have been almost occluded by the nearby buildings as well
as others roads, so there does not exist any better choice for the
seamline. The detailed statistical results of this experiment on five
Toronto aerial images are listed in Table 2. Furthermore, Fig. 16
shows the optimization computation times and the seamline detec-
tion results in the failed image region shown in Fig. 14(e) with the
different down-scaling factors. From Fig. 16(a), we observed that
the elapsed times will be greatly decreased with the decreasing of
the down-scaling factor S. From Fig. 16(b), we observed that the
seamlines are improved but still cannot completely avoid passing
through that tall building.

We also compared our seamlines detection results on Toronto
aerial images with OrthoVista, which is a popularly used commer-
cial software to generate orthoimage. The seamlines generated by
OrthoVista are shown in Fig. 17. By comparing the seamline detec-
tion results of our proposed algorithm and OrthoVista, we found
that our algorithm obviously outperforms OrthoVista. From Table 2,
we found that the seamlines detected by our algorithm pass

http://www2.isprs.org/commissions/comm3/wg4/tests.html
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through 8 buildings and 6 cars at all, but 26 buildings and 47 cars
were crossed by the seamlines detected by OrthoVista as shown in
Fig. 17. The computational times of OrthoVista and our algorithm
are 63 s and 57.24 s, respectively, which are almost the same.
6. Conclusions

In this paper, we proposed to efficiently detect globally optimal
seamlines for mosaicking a set of geometrically aligned street-view
panoramic or aerial images into a visual-appealing and informative
wide-angle composite image in a graph cuts energy minimization
framework. The contributions in this paper are summarized as
follows:

� We formulated the optimal seamline detection as a unified
graph cuts energy minimization problem. Experimental results
have demonstrated its suitability for mosaicking different types
of images, including street-view panoramic, aerial and oblique
ones, respectively.

� We proposed to integrate a texture complexity energy term into
the final energy costs in graph cuts. This energy term for each
pixel is calculated based on the HOG vector of the small image
region centered at that pixel. Experimental results showed that
the texture complexity energy term can guide the seamline
more possibly passing through some specific regions such as
roads, sky, woodlands, and green lands, in which the parallaxes
caused by geometrical misalignments are more easily concealed
in vision. In addition, the other two energy terms based on the
color differences and the gradient magnitudes are also com-
bined in our energy functions to ensure to find the high-
quality seamlines.

� We proposed a multi-frame joint optimization via multi-label
graph cuts to deal with multi-overlapped images. Compared
with the traditional frame-to-frame optimization strategy, our
proposed strategy is more reasonable and effective but needs
a higher computation cost and a significantly larger memory.

� We proposed simple but effective human–computer interaction
(HCI) strategies for the end-users to semi-automatically detect
the seamlines. Representative experiments on several groups
of street-view panoramic images had proved its effectiveness
and simplicity. Sometimes, such those HCI operations are very
necessary for mosaicking a large set of images, especially aerial
or oblique ones, into a pleasant composite image because some
seamlines are possibly located in poor regions we don’t expect.

Nevertheless, the proposed algorithm may be improved in the
future in the following ways. First, the parallel optimization strat-
egy is expected to be developed to efficiently detect seamlines
from a large set of images via multi-frame joint optimization,
which should improve the efficiency at the prerequisite of ensuring
the high quality of seamlines. Second, the superpixel segmentation
can be introduced to greatly improve the optimization efficiency
by decreasing the number of elements in graph cuts. Third, the
scene understanding or parsing can be applied in some particular
image data. For example, the roads can be detected out for guiding
the seamlines. At last but not least, the seamline network opti-
mization framework (Pan et al., 2009; Mills and McLeod, 2013;
Chen et al., 2014) can be combined with our algorithm to produce
a complete image mosaic from a large set of images automatically.
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